Математический форум Math Help Planet
http://mathhelpplanet.com/

Предел отношения показательных функций
http://mathhelpplanet.com/viewtopic.php?f=53&t=35615
Страница 1 из 1

Автор:  Arno [ 19 сен 2014, 19:03 ]
Заголовок сообщения:  Предел отношения показательных функций

lim (x-->0) ((7^x)-1)/((4^x)-1) -???
Помогите, пожалуйста))))
Может на х поделить? Но что это даст?
Спасибо!

Автор:  Shadows [ 19 сен 2014, 19:09 ]
Заголовок сообщения:  Re: Предел отношения показательных функций

Лопиталя не пробовали?

Автор:  mad_math [ 19 сен 2014, 20:12 ]
Заголовок сообщения:  Re: Предел отношения показательных функций

Может в следствия из второго замечательного предела поглядеть?

[math]\lim_{x \to 0}\frac{a^x - 1}{x \ln a}= 1[/math] для [math]a > 0 \,\!, a \neq 1 \,\![/math]

Автор:  Arno [ 19 сен 2014, 20:41 ]
Заголовок сообщения:  Re: Предел отношения показательных функций

Спасибо!!!))) :D1

Автор:  mad_math [ 19 сен 2014, 21:09 ]
Заголовок сообщения:  Re: Предел отношения показательных функций

Всегда пожалуйста :)

Автор:  Arno [ 21 сен 2014, 16:54 ]
Заголовок сообщения:  Re: Предел отношения показательных функций

Mad_math, помогите, пожалуйста, с вот этим пределом))) :) :) :)
lim (x--->0) (sin (5x)-5x)/(13*(x^3))=1/13*lim (x--->0) (sin (5x)-5x)/(x^3)

Автор:  victor1111 [ 21 сен 2014, 17:48 ]
Заголовок сообщения:  Re: Предел отношения показательных функций

Arno писал(а):
Mad_math, помогите, пожалуйста, с вот этим пределом))) :) :) :)
lim (x--->0) (sin (5x)-5x)/(13*(x^3))=1/13*lim (x--->0) (sin (5x)-5x)/(x^3)

Воспользуйтесь дважды правилом Лопиталя и получите ответ. -125/78.

Страница 1 из 1 Часовой пояс: UTC + 3 часа [ Летнее время ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/