Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 15 ]  На страницу Пред.  1, 2
Автор Сообщение
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 12 май 2014, 11:35 
Не в сети
Light & Truth
Зарегистрирован:
21 авг 2011, 14:49
Сообщений: 5279
Cпасибо сказано: 315
Спасибо получено:
2299 раз в 1966 сообщениях
Очков репутации: 520

Добавить очки репутацииУменьшить очки репутации
dr Watson писал(а):
Куда прикажете девать примеры, подобные тем, что я приводил?

Третий предел аналогичен первому и равен нулю.

PS. Вот, американцы тоже так считают, Вольфрам даёт ноль.


Последний раз редактировалось Yurik 12 май 2014, 11:40, всего редактировалось 1 раз.
Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 12 май 2014, 11:39 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
18 авг 2013, 14:27
Сообщений: 1978
Откуда: Москва
Cпасибо сказано: 384
Спасибо получено:
1069 раз в 855 сообщениях
Очков репутации: 197

Добавить очки репутацииУменьшить очки репутации
Yurik, а в каком учебнике используется [math]\infty[/math] исключительно как [math]+\infty[/math] ?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 12 май 2014, 11:45 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
29 окт 2010, 11:15
Сообщений: 2790
Откуда: СССР
Cпасибо сказано: 120
Спасибо получено:
857 раз в 688 сообщениях
Очков репутации: 203

Добавить очки репутацииУменьшить очки репутации
Вот как? :lol:
А ежели по Гейне взять последовательность [math]x_n=n(-1)^n[/math] и, подставив её в функцию, рассмотреть соответствующую последовательность значений [math]\frac{1}{1+e^{n(-1)^n}}[/math], она будет иметь предел 0? :hh:)
Или такие пределы, по Вашему, вообще нельзя рассматривать?
А американцы (где и какие? у них тоже грамотеев хватает) нам не указ, тем более железяка вольфрам.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 12 май 2014, 11:53 
Не в сети
Light & Truth
Зарегистрирован:
21 авг 2011, 14:49
Сообщений: 5279
Cпасибо сказано: 315
Спасибо получено:
2299 раз в 1966 сообщениях
Очков репутации: 520

Добавить очки репутацииУменьшить очки репутации
dr Watson писал(а):
А ежели по Гейне взять последовательность

Я же говорил, что это предмет дискуссий. Примеры такие встречаются редко (уж не в учебном курсе), и можно условие описать по-человечески, так как Вы его записали в этот раз.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 12 май 2014, 11:59 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
29 окт 2010, 11:15
Сообщений: 2790
Откуда: СССР
Cпасибо сказано: 120
Спасибо получено:
857 раз в 688 сообщениях
Очков репутации: 203

Добавить очки репутацииУменьшить очки репутации
Всё с Вами ясно - Вы по-прежнему в плену смутных понятий. Возьмите Демидовича, в конце концов, и посмотрите в задачах, как различаются пределы в [math]+\infty, \ -\infty[/math] и в [math]\infty[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2  Страница 2 из 2 [ Сообщений: 15 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Вычислить предел выражения, используя 1 замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

syncedzz

7

453

13 окт 2022, 15:55

Решить предел. Второй замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

NuTysya

1

376

21 фев 2023, 09:54

Решить предел. Второй замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

NuTysya

10

650

21 фев 2023, 09:55

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Nadi_B

3

237

26 апр 2015, 10:39

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

aljke

3

282

07 апр 2015, 14:36

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Snuss

11

914

01 мар 2015, 17:53

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Cursedsmite

6

485

25 мар 2015, 15:49

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

lllulll

2

224

23 мар 2015, 08:05

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

yana05

2

285

31 мар 2015, 21:37

Предел при х->0-

в форуме Дифференциальное исчисление

Schwarte

2

256

03 янв 2021, 22:15


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 5


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved