Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 6 ] 
Автор Сообщение
 Заголовок сообщения: Жуткие доказательства пределов с факториалами
СообщениеДобавлено: 07 мар 2014, 17:50 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
21 фев 2014, 16:26
Сообщений: 114
Cпасибо сказано: 17
Спасибо получено:
1 раз в 1 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Всем доброго времени суток! Есть следующие пределы, нужно их доказать. Вроде как навскидку можно сказать, что факториал растёт быстрее любой функции, тогда почему двойной факториал оказывается растёт медленнее степенной функции? Он же наоборот должен ещё быстрее расти? Всем спасибо, кто поможет разобраться!Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Жуткие доказательства пределов с факториалами
СообщениеДобавлено: 07 мар 2014, 18:12 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
01 янв 2014, 15:52
Сообщений: 494
Откуда: Hogwarts
Cпасибо сказано: 35
Спасибо получено:
143 раз в 130 сообщениях
Очков репутации: 71

Добавить очки репутацииУменьшить очки репутации
[math]1.\ \int\limits_{1}^{2n}\ln{x}dx<\ln{1}+\ln{2}+...+\ln{2n}=\ln{(2n)!}\ \iff \ 2n\ln{2n}-2n+1<\ln{(2n)!}\ \Longrightarrow \ (2n)^{2n}e^{-2n+1} <(2n!)\ .[/math]
Таким образом, [math]0<a_{n}<\frac{ n^{n} }{ (2n)^{2n}e^{-2n+1} }\ \Longrightarrow \ 0 \leqslant \lim_{n \to \infty }a_{n} \leqslant \lim_{n \to \infty }\frac{ n^{n} }{ (2n)^{2n}e^{-2n+1} }=0.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Жуткие доказательства пределов с факториалами
СообщениеДобавлено: 07 мар 2014, 18:35 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
21 фев 2014, 16:26
Сообщений: 114
Cпасибо сказано: 17
Спасибо получено:
1 раз в 1 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Спасибо) выглядит устрашающе, попытаюсь разобраться!)
Вот откуда, например, взялось то, что Изображение
Откуда взялся факториал? Или это какое-нибудь свойство? )

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Жуткие доказательства пределов с факториалами
СообщениеДобавлено: 07 мар 2014, 19:55 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
01 янв 2014, 15:52
Сообщений: 494
Откуда: Hogwarts
Cпасибо сказано: 35
Спасибо получено:
143 раз в 130 сообщениях
Очков репутации: 71

Добавить очки репутацииУменьшить очки репутации
Цитата:
Или это какое-нибудь свойство? )

DeusEx да, так и есть. Повторите свойства логарифмов.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Жуткие доказательства пределов с факториалами
СообщениеДобавлено: 07 мар 2014, 21:38 
Не в сети
Начинающий
Зарегистрирован:
12 окт 2013, 11:29
Сообщений: 19
Cпасибо сказано: 6
Спасибо получено:
4 раз в 4 сообщениях
Очков репутации: 3

Добавить очки репутацииУменьшить очки репутации
Здравствуйте,

Я хотел бы предложить своё доказательства пользуясь монотонностью последовательностей:

[math]x_{n}=\frac{ n^n }{ (2n)! }[/math]; [math]\frac{ x_{n+1} }{ x_{n} }=\frac{ \frac{ (n+1)^{n+1} }{ (2n+2)! } }{ \frac{ n^n }{ (2n)!} }=(1+\frac{1}{n})^n*\frac{1}{2(2n+1)} \to e*0=0[/math]

Тогда предположим что [math]\lim\;x_{n}=a[/math]:

[math]x_{n+1}=(1+\frac{1}{n})^n*\frac{1}{2(2n+1)}*x_n \to a=0*a \Rightarrow a=0[/math]

В итоге [math]\lim\;x_{n}=0[/math] то есть [math]\lim\;\frac{ n^n }{ (2n)! }=0[/math]

Доказано.

Простите если наделал грамматических ошибок. :)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Жуткие доказательства пределов с факториалами
СообщениеДобавлено: 07 мар 2014, 21:44 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
01 янв 2014, 15:52
Сообщений: 494
Откуда: Hogwarts
Cпасибо сказано: 35
Спасибо получено:
143 раз в 130 сообщениях
Очков репутации: 71

Добавить очки репутацииУменьшить очки репутации
lelius да, можно и так. Хотя, стремление к нулю отношения уже говорит о том, что ряд, составленный из [math]a_{n},[/math] сходится(признак Даламбера); следовательно общий член ряда стремится к нулю.
Однако, переход к рекуррентному тоже хорошо. :)

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 6 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
9 класс. Уравнения с факториалами

в форуме Алгебра

Flutt1

3

1262

17 мар 2016, 19:47

Как сократить дробь с факториалами?

в форуме Алгебра

sfanter

1

1523

06 май 2016, 07:49

Сходимость ряда с факториалами

в форуме Ряды

Lion223

2

793

09 ноя 2016, 01:01

Вычислить предел с факториалами

в форуме Пределы числовых последовательностей и функций, Исследования функций

mkolmi

2

1025

06 окт 2017, 15:36

Упростите выражение с факториалами

в форуме Алгебра

Qwery33

1

161

30 ноя 2021, 10:15

Доказательства

в форуме Алгебра

DeD

8

587

14 окт 2016, 10:46

Доказательства

в форуме Дискретная математика, Теория множеств и Логика

DeD

9

448

18 окт 2016, 11:10

Доказательства теорем

в форуме Дискретная математика, Теория множеств и Логика

aManOnTheEarth

33

629

28 июл 2019, 02:09

Проверить правильность доказательства.

в форуме Линейная и Абстрактная алгебра

Shirypen

1

177

25 сен 2023, 17:16

Пара задач на доказательства

в форуме Теория вероятностей

math_help_pls

1

265

11 дек 2018, 11:53


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved