Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 16 ]  На страницу Пред.  1, 2
Автор Сообщение
 Заголовок сообщения: Re: Найти указанные пределы (не используя правило Лопиталя)
СообщениеДобавлено: 31 дек 2013, 13:25 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Yurik писал(а):
Там замена знаменателя на эквивалент.

Я не вижу большой разницы между Лопиталем и эквивалентом.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти указанные пределы (не используя правило Лопиталя)
СообщениеДобавлено: 31 дек 2013, 13:29 
Не в сети
Light & Truth
Зарегистрирован:
21 авг 2011, 14:49
Сообщений: 5279
Cпасибо сказано: 315
Спасибо получено:
2299 раз в 1966 сообщениях
Очков репутации: 520

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Я не вижу большой разницы между Лопиталем и эквивалентом.

Ну, разложите тогда знаменатель в ряд Маклорена. :D1

Ps. Да, и замену на эквивалентные бесконечно малые проходят гораздо раньше правила Лопиталя.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Yurik "Спасибо" сказали:
Talanov
 Заголовок сообщения: Re: Найти указанные пределы (не используя правило Лопиталя)
СообщениеДобавлено: 31 дек 2013, 15:22 
Не в сети
Light & Truth
Зарегистрирован:
21 авг 2011, 14:49
Сообщений: 5279
Cпасибо сказано: 315
Спасибо получено:
2299 раз в 1966 сообщениях
Очков репутации: 520

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Нет предела извращениям.

[math]\mathop {\lim }\limits_{x \to 0} \frac{{3x}}{{\ln \left( {1 + 2x} \right)}} = \mathop {\lim }\limits_{x \to 0} {\left( {\frac{{\ln \left( {1 + 2x} \right)}}{{3x}}} \right)^{ - 1}} = \mathop {\lim }\limits_{x \to 0} {\left( {\ln {{\left( {1 + 2x} \right)}^{\frac{1}{{3x}}}}} \right)^{ - 1}} = {\left( {\ln {e^{\frac{2}{3}}}} \right)^{ - 1}} = \frac{3}{2}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти указанные пределы (не используя правило Лопиталя)
СообщениеДобавлено: 31 дек 2013, 17:55 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22358
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
Yurik
Yurik писал(а):
А что же про д) все молчат? Там замена знаменателя на эквивалент.
[math]=\frac{3}{2}[/math].

Все молчат, потому что автор вопроса молчит. Может быть, для него вопрос был актуален только в течение нескольких дней.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти указанные пределы (не используя правило Лопиталя)
СообщениеДобавлено: 31 дек 2013, 17:57 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22358
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
Talanov
Talanov писал(а):
Yurik писал(а):
Там замена знаменателя на эквивалент.

Я не вижу большой разницы между Лопиталем и эквивалентом.

Маркиз Де Лопиталь - человек, а эквивалент - это не человек. :D1

А если серьёзно, разница всё-таки есть. Эквивалент находится без перехода к производным.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Andy "Спасибо" сказали:
Talanov
 Заголовок сообщения: Re: Найти указанные пределы (не используя правило Лопиталя)
СообщениеДобавлено: 31 дек 2013, 19:44 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Возможно, только в сказки я уже не верю.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2  Страница 2 из 2 [ Сообщений: 16 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Найти указанные пределы (не используя правило Лопиталя)

в форуме Пределы числовых последовательностей и функций, Исследования функций

Lika

1

600

22 фев 2015, 21:12

Найти указанные пределы(не используя правило Лопиталя)

в форуме Пределы числовых последовательностей и функций, Исследования функций

v-mariam

8

968

13 июн 2015, 19:31

Найти пределы не используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

The Exorcist

1

750

12 дек 2014, 01:37

Используя правило Лопиталя, найти пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

e_vuk15

1

150

21 дек 2019, 14:04

Найти пределы, используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

Alex Snake

3

383

12 дек 2018, 23:44

Найти пределы, используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

liskamr

1

425

09 янв 2017, 12:40

Найти пределы функций, не используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

VladKozachok

2

259

09 апр 2019, 09:17

Найти пределы функции, не используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

locker

4

272

17 дек 2021, 00:47

Вычислить пределы не используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

bulan

4

443

04 май 2021, 17:13

Вычислить пределы, не используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

Stepan_888

3

755

21 ноя 2016, 10:03


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved