Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу Пред.  1, 2
Автор Сообщение
 Заголовок сообщения: Re: Решение пределов
СообщениеДобавлено: 08 дек 2013, 19:51 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Malenkayaa писал(а):
этот вышло разложить
И что получилось?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решение пределов
СообщениеДобавлено: 08 дек 2013, 21:09 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
18 авг 2013, 14:27
Сообщений: 1978
Откуда: Москва
Cпасибо сказано: 384
Спасибо получено:
1069 раз в 855 сообщениях
Очков репутации: 197

Добавить очки репутацииУменьшить очки репутации
[math](x^{2}-x-2)^{2}=((x-2)(x+1))^{2}[/math]


Последний раз редактировалось radix 08 дек 2013, 21:12, всего редактировалось 1 раз.
Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решение пределов
СообщениеДобавлено: 08 дек 2013, 21:11 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
18 авг 2013, 14:27
Сообщений: 1978
Откуда: Москва
Cпасибо сказано: 384
Спасибо получено:
1069 раз в 855 сообщениях
Очков репутации: 197

Добавить очки репутацииУменьшить очки репутации
Yurik писал(а):
Kirill Verepa писал(а):
Это невозможно.

[math]x^3-5x+4=(x-1)(x^2+x-4)[/math]

Там [math]-4[/math]
И первый множитель будет [math](x+1)[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решение пределов
СообщениеДобавлено: 08 дек 2013, 22:07 
Не в сети
Мастер
Зарегистрирован:
17 ноя 2013, 00:12
Сообщений: 236
Откуда: Украина, Запорожье
Cпасибо сказано: 8
Спасибо получено:
88 раз в 77 сообщениях
Очков репутации: 32

Добавить очки репутацииУменьшить очки репутации
Окончательный ход решения, на мой взгляд, такой:
для начала убеждаетесь, что у Вас неопределенность типа 0 на 0. Правило Лопиталя, соответственно применять из условия задачи нельзя, поэтому преобразовываете числитель в следующий вид
x^3-5x-4 = (x+1)(x^2-x-4)
Знаменатель Вы уже преобразовали. Далее сокращая на множитель (x+1) избавляетесь от неопределенности и получаете в знаменателе 0, значит ответ : +∞.
Можете себя проверить с помощью правила Лопиталя.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решение пределов
СообщениеДобавлено: 08 дек 2013, 22:14 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
И зачем вам было нужно делать совсем элементарное за человека, который не проявил никакого желания разобраться в примере?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решение пределов
СообщениеДобавлено: 08 дек 2013, 22:22 
Не в сети
Мастер
Зарегистрирован:
17 ноя 2013, 00:12
Сообщений: 236
Откуда: Украина, Запорожье
Cпасибо сказано: 8
Спасибо получено:
88 раз в 77 сообщениях
Очков репутации: 32

Добавить очки репутацииУменьшить очки репутации
mad_math писал(а):
И зачем вам было нужно делать совсем элементарное за человека, который не проявил никакого желания разобраться в примере?


сейчас практически везде такое отношение просящих помощь в решении. Тогда нет смысла в этом форуме, а я бы не хотел, чтобы это было так. Сам присоединился недавно, затянуло! Молодцы, что создали такую махину! :beer:

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решение пределов
СообщениеДобавлено: 09 дек 2013, 08:41 
Не в сети
Light & Truth
Зарегистрирован:
21 авг 2011, 14:49
Сообщений: 5279
Cпасибо сказано: 315
Спасибо получено:
2299 раз в 1966 сообщениях
Очков репутации: 520

Добавить очки репутацииУменьшить очки репутации
Да, я опечалася, не заметили?
[math]x^3-5x-4=(x+1)(x^2-x-4)[/math].
А вот второй.
[math](x^2-x-2)^2=(x+1)^2(x-2)^2[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2  Страница 2 из 2 [ Сообщений: 17 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Решение пределов

в форуме Пределы числовых последовательностей и функций, Исследования функций

Polina7

1

162

28 ноя 2018, 22:10

Решение пределов

в форуме Пределы числовых последовательностей и функций, Исследования функций

avchinova

1

278

06 фев 2016, 16:52

Решение пределов

в форуме Пределы числовых последовательностей и функций, Исследования функций

Kirill_1103

4

257

23 ноя 2019, 19:32

Решение пределов

в форуме Пределы числовых последовательностей и функций, Исследования функций

AKAPONI

2

218

20 окт 2019, 14:44

Решение пределов

в форуме Пределы числовых последовательностей и функций, Исследования функций

Kostya151

4

333

01 ноя 2015, 10:59

Решение пределов

в форуме Пределы числовых последовательностей и функций, Исследования функций

lgavrilova

2

505

23 сен 2015, 19:03

Решение пределов lim sin и степени

в форуме Пределы числовых последовательностей и функций, Исследования функций

Sergey2018

3

182

19 ноя 2018, 14:33

Распишите полностью решение пределов

в форуме Пределы числовых последовательностей и функций, Исследования функций

antonvers

1

342

19 окт 2015, 16:03

Какое решение будет у пределов?

в форуме Пределы числовых последовательностей и функций, Исследования функций

olga_budilova

3

341

28 дек 2014, 19:25

Решение пределов с различными неопределенностями

в форуме Пределы числовых последовательностей и функций, Исследования функций

1TeD

1

305

28 мар 2018, 21:05


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 7


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved