Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 4 ] 
Автор Сообщение
 Заголовок сообщения: Исследовать функцию на непрерывность. Сделать схематический
СообщениеДобавлено: 03 дек 2013, 19:53 
Не в сети
Начинающий
Зарегистрирован:
01 дек 2013, 16:44
Сообщений: 3
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Помогите, пожалуйста. Нужно исследовать эти две функции на непрерывность и сделать их схематический рисунок. Сколько литературы читал - не могу разобраться. Надеюсь, поможете. Заранее большое-большое спасибо Вам.Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию на непрерывность. Сделать схематический
СообщениеДобавлено: 03 дек 2013, 20:16 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
temqa1996 писал(а):
Сколько литературы читал - не могу разобраться.
А что конкретно не понятно?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию на непрерывность. Сделать схематический
СообщениеДобавлено: 03 дек 2013, 20:19 
Не в сети
Начинающий
Зарегистрирован:
01 дек 2013, 16:44
Сообщений: 3
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Я понимаю, что нужно взять лимит(х->0-0) от -х
Потом лимит х->0+0 от -х
Так же от Пи
Лимит х->п-0 от х-2
лимит х->п+0 от х-2
Так ведь?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию на непрерывность. Сделать схематический
СообщениеДобавлено: 03 дек 2013, 22:44 
Не в сети
Beautiful Mind
Зарегистрирован:
16 дек 2012, 17:11
Сообщений: 1730
Cпасибо сказано: 160
Спасибо получено:
322 раз в 309 сообщениях
Очков репутации: 104

Добавить очки репутацииУменьшить очки репутации
[math]\lim\limits_{x \to 0+0} f(x) = \lim\limits_{x \to 0+0} \sin(x)[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 4 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

proswett

1

424

19 ноя 2018, 16:36

Исследовать на непрерывность функцию

в форуме Пределы числовых последовательностей и функций, Исследования функций

Zqquiet

5

389

15 дек 2020, 11:54

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

Evgeny121

4

437

26 окт 2018, 23:05

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

Karina_bc

1

340

20 дек 2016, 13:27

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

MathSamurai

2

230

23 авг 2019, 11:14

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

Tagir

1

468

07 фев 2015, 11:26

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

anya_lukanina

1

377

17 дек 2014, 18:49

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

Kiryanovth

3

453

05 июн 2016, 16:07

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

KiraLeto

16

1173

12 дек 2014, 23:07

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

solitudka

2

161

23 окт 2022, 17:05


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 7


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved