Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 16 ]  На страницу 1, 2  След.
Автор Сообщение
 Заголовок сообщения: Пределы
СообщениеДобавлено: 27 окт 2013, 21:05 
Не в сети
Начинающий
Зарегистрирован:
27 окт 2013, 12:37
Сообщений: 7
Cпасибо сказано: 4
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Направьте меня на истинный путь по каждому примеру, буду благодарен если распишите нужные способы решения. А то ночь, и путаюсь во всей информации.
Изображение

Сейчас застрял на примере д. Не понимаю, что сделать с числителем.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Пределы
СообщениеДобавлено: 27 окт 2013, 21:33 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22357
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
Medem
"Навскидку" мне кажется, что проще всего воспользоваться таблицей эквивалентных бесконечно малых функций.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Пределы
СообщениеДобавлено: 27 окт 2013, 21:38 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
д) Числитель сводить к следствию из второго замечательного предела [math]\lim_{x \to 0}\frac{a^x - 1}{x \ln a}= 1[/math] для [math]a > 0 \,\!, a \neq 1 \,\![/math], например, вынести за скобку [math]2^x[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю mad_math "Спасибо" сказали:
Medem
 Заголовок сообщения: Re: Пределы
СообщениеДобавлено: 27 окт 2013, 21:39 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Andy писал(а):
проще всего воспользоваться таблицей эквивалентных бесконечно малых функций.
Или так :D1

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Пределы
СообщениеДобавлено: 27 окт 2013, 21:45 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13564
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3625 раз в 3182 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
д) [math]=\lim \limits_{x \to 0}\frac{3^{5x}-1-\big ( 2^x-1\big )}{x-\sin(x)}[/math]

Применяем ЭБМ:

[math]=\lim \limits_{x \to 0}\frac{5x \, \ln(3)-x\,\ln(2)}{x-9x}=\frac 18 \left [\ln(2)-5\ln(3) \right ][/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Avgust "Спасибо" сказали:
Medem
 Заголовок сообщения: Re: Пределы
СообщениеДобавлено: 27 окт 2013, 21:48 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Хотя имеется мнение, что в разности [math]x-\sin{x}[/math] ЭБМ не всегда можно применить.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Пределы
СообщениеДобавлено: 27 окт 2013, 22:06 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22357
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
mad_math
mad_math писал(а):
{jnz bvttncz vytybt, xnj d hfpyjcnb [math]x-\sin{x}[/math] ЭБМ не всегда можно применить.

Где бы прочитать про это?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Пределы
СообщениеДобавлено: 27 окт 2013, 22:34 
Не в сети
Начинающий
Зарегистрирован:
27 окт 2013, 12:37
Сообщений: 7
Cпасибо сказано: 4
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Таки сделал д и е. В ж и з приводить новую стремительную переменную и опять по ЭБМ? Или что-то другое?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Пределы
СообщениеДобавлено: 27 окт 2013, 22:35 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Andy писал(а):
Где бы прочитать про это?
Когда-то на этом форуме об этом писал Профессор, но сейчас я ту тему не найду (не поставила на неё закладку, к сожалению). Я даже не уверена, что это действительно так, просто сидит у меня в голове мысль о том, что для разности ЭБМ нужно применять с осторожностью.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Пределы
СообщениеДобавлено: 27 окт 2013, 22:36 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Medem писал(а):
В ж и з приводить новую стремительную переменную и опять по ЭБМ? Или что-то другое?
Примерно так. Или использовать замечательные пределы. Как удобнее.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу 1, 2  След.  Страница 1 из 2 [ Сообщений: 16 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

Helena_Ivenson

1

310

25 май 2015, 20:13

Пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

kerim

13

643

24 июн 2015, 18:58

К/р пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

kekr

0

185

27 дек 2016, 20:30

Пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

Den4ke

1

283

21 сен 2015, 18:54

Пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

Helena_Ivenson

10

645

20 май 2015, 00:06

Пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

igoryan_ls

4

260

22 ноя 2017, 17:57

Пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

krak

1

323

24 сен 2015, 20:05

Пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

antonvers

1

253

18 окт 2015, 16:22

Пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

knoxx

2

243

11 май 2016, 09:30

Пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

cincinat

5

477

15 апр 2016, 22:46


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 5


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved