Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 4 ] 
Автор Сообщение
 Заголовок сообщения: Предел
СообщениеДобавлено: 08 окт 2013, 22:30 
Не в сети
Начинающий
Зарегистрирован:
08 окт 2013, 22:11
Сообщений: 2
Cпасибо сказано: 2
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 08 окт 2013, 23:31 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Сделайте замену [math]y=x-1,\,y\to 0[/math], а потом сводите к замечательным пределам.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 09 окт 2013, 01:52 
В сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13564
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3624 раз в 3181 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
Можно применить мои любимейшие ЭБМ:

[math]=\lim\limits_{x \to 1}\frac{e\big ( e^{x-1}-1\big )}{\sin \big ( x^2-1\big )}=e \cdot \lim\limits_{t \to 0}\frac{ e^{t}-1}{\sin \big [ (t+1)^2-1\big ]}=e \cdot \lim\limits_{t \to 0}\frac{t}{t( t+2 )}=\frac {e}{2}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 09 окт 2013, 09:26 
Не в сети
Light & Truth
Зарегистрирован:
21 авг 2011, 14:49
Сообщений: 5279
Cпасибо сказано: 315
Спасибо получено:
2299 раз в 1966 сообщениях
Очков репутации: 520

Добавить очки репутацииУменьшить очки репутации
Avgust, а зачем Вы замены делали?
[math]= \mathop {\lim }\limits_{x \to 1} \frac{{e({e^{x - 1}} - 1)}}{{\sin ({x^2} - 1)}} = e\cdot\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{{x^2} - 1}} = e\cdot\mathop {\lim }\limits_{x \to 1} \frac{1}{{x + 1}} = \frac{e}{2}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 4 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Вычислить предел выражения, используя 1 замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

syncedzz

7

453

13 окт 2022, 15:55

Решить предел. Второй замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

NuTysya

1

376

21 фев 2023, 09:54

Решить предел. Второй замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

NuTysya

10

649

21 фев 2023, 09:55

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Nadi_B

3

237

26 апр 2015, 10:39

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

aljke

3

282

07 апр 2015, 14:36

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Snuss

11

914

01 мар 2015, 17:53

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Cursedsmite

6

485

25 мар 2015, 15:49

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

lllulll

2

224

23 мар 2015, 08:05

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

yana05

2

284

31 мар 2015, 21:37

Предел при х->0-

в форуме Дифференциальное исчисление

Schwarte

2

256

03 янв 2021, 22:15


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved