Математический форум Math Help Planet
http://mathhelpplanet.com/

Доказать равенство
http://mathhelpplanet.com/viewtopic.php?f=53&t=26710
Страница 1 из 1

Автор:  cmcm2 [ 06 окт 2013, 15:16 ]
Заголовок сообщения:  Доказать равенство

помогите доказать равенство [math]\lim_{n \to \infty } \sqrt[n]{x} = 1[/math] с помощью [math](1 + x) >= 1 + nx[/math]

Автор:  Prokop [ 06 окт 2013, 17:03 ]
Заголовок сообщения:  Re: Доказать равенство

С помощью
[math]\left( 1+t \right)^n \geq 1+nt[/math]

Автор:  Human [ 07 окт 2013, 12:36 ]
Заголовок сообщения:  Re: Доказать равенство

При [math]x>1[/math] получаем

[math]x=(1+\sqrt[n]x-1)^n\geqslant1+n(\sqrt[n]x-1)[/math]

откуда

[math]0<\sqrt[n]x-1\leqslant\frac{x-1}n\to0[/math]

Значит [math]\lim_{n\to\infty}\sqrt[n]x=1[/math].

При [math]0<x<1[/math] получаем

[math]\sqrt[n]x=\frac1{\sqrt[n]{\frac1x}}\to1[/math]

Страница 1 из 1 Часовой пояс: UTC + 3 часа [ Летнее время ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/