Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 3 ] 
Автор Сообщение
 Заголовок сообщения: Вычислить предел правилом Лопиталя
СообщениеДобавлено: 10 мар 2013, 18:44 
Не в сети
Оракул
Аватара пользователя
Зарегистрирован:
22 мар 2011, 20:12
Сообщений: 901
Откуда: Сочи
Cпасибо сказано: 485
Спасибо получено:
248 раз в 189 сообщениях
Очков репутации: 105

Добавить очки репутацииУменьшить очки репутации
Предел нужно вычислить правилом Лопиталя
[math]\mathop{\lim}\limits_{x \to 0}{\left({\frac{{tgx}}{x}}\right)^{\frac{1}{{{x^2}}}}}={e^{\mathop{\lim}\limits_{x \to 0}\frac{1}{{{x^2}}}\ln \frac{{tgx}}{x}}}[/math]

А что, собственно, дальше? Не понимаю, как его свести к нужной неопределенности...

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Вычислить предел правилом Лопиталя
СообщениеДобавлено: 10 мар 2013, 23:37 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
03 апр 2012, 03:09
Сообщений: 4113
Cпасибо сказано: 116
Спасибо получено:
1823 раз в 1515 сообщениях
Очков репутации: 379

Добавить очки репутацииУменьшить очки репутации
Поскольку [math]\frac{\operatorname{tg}x}x\sim 1[/math] при [math]x\to0[/math], то

[math]\frac1{x^2}\ln\frac{\operatorname{tg}x}x\sim\frac1{x^2}\left(\frac{\operatorname{tg}x}x-1\right)=\frac{\operatorname{tg}x-x}{x^3}[/math]

Теперь лопитальте.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Human "Спасибо" сказали:
Sviatoslav, valentina
 Заголовок сообщения: Re: Вычислить предел правилом Лопиталя
СообщениеДобавлено: 11 мар 2013, 19:13 
Не в сети
Оракул
Аватара пользователя
Зарегистрирован:
22 мар 2011, 20:12
Сообщений: 901
Откуда: Сочи
Cпасибо сказано: 485
Спасибо получено:
248 раз в 189 сообщениях
Очков репутации: 105

Добавить очки репутацииУменьшить очки репутации
Спасибо, даже не подумал о таком подходе :)

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 3 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Вычислить предел, не пользуясь правилом Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

vika19

3

217

12 окт 2020, 15:39

Вычислить предел функции правилом Лопиталя

в форуме Дифференциальное исчисление

Mazzak

6

151

22 дек 2019, 19:13

Вычислить предел, не пользуясь правилом Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

333Leonid18

6

526

16 ноя 2017, 23:16

Вычислить предел, не пользуясь правилом Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

agroshkolnik

4

392

27 ноя 2017, 16:11

Вычислить предел,не пользуясь правилом Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

Ket

2

286

27 дек 2017, 15:32

Вычислить предел, не пользуясь правилом Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

shked19

1

321

20 янв 2019, 20:01

Вычислить предел функции, не пользуясь правилом Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

INEEDAHERO

2

195

04 дек 2020, 17:10

Вычислить предел функции, не пользуясь правилом Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

murrrena88

13

452

05 дек 2020, 01:26

Предел с правилом Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

Rodogast

3

261

14 фев 2017, 18:12

Предел пользуясь правилом Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

ronald13

4

494

06 дек 2016, 00:40


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved