Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 13 ]  На страницу 1, 2  След.
Автор Сообщение
 Заголовок сообщения: Предел
СообщениеДобавлено: 29 янв 2013, 13:36 
Не в сети
Одарённый
Зарегистрирован:
05 окт 2012, 13:20
Сообщений: 163
Cпасибо сказано: 43
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
[math]\mathop{\lim}\limits_{x \to - 1}\frac{{^3\sqrt{x - 7}+ 2}}{{x + 1}}[/math]
объясните,как это решать?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 29 янв 2013, 13:45 
Не в сети
Оракул
Аватара пользователя
Зарегистрирован:
22 мар 2011, 20:12
Сообщений: 901
Откуда: Сочи
Cпасибо сказано: 485
Спасибо получено:
248 раз в 189 сообщениях
Очков репутации: 105

Добавить очки репутацииУменьшить очки репутации
Нужно дополнить числитель, чтобы получилась формула суммы кубов. Домножьте числитель и знаменатель на [math]\left({\sqrt[3]{{{{\left({x - 7}\right)}^2}}}- 2\sqrt[3]{{x - 7}}+{2^2}}\right)[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 29 янв 2013, 13:56 
Не в сети
Одарённый
Зарегистрирован:
05 окт 2012, 13:20
Сообщений: 163
Cпасибо сказано: 43
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
а дальше что делать?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 29 янв 2013, 14:03 
Не в сети
Оракул
Аватара пользователя
Зарегистрирован:
22 мар 2011, 20:12
Сообщений: 901
Откуда: Сочи
Cпасибо сказано: 485
Спасибо получено:
248 раз в 189 сообщениях
Очков репутации: 105

Добавить очки репутацииУменьшить очки репутации
[math]\left({\sqrt[3]{{x - 7}}+ 2}\right)\left({\sqrt[3]{{{{\left({x - 7}\right)}^2}}}- 2\sqrt[3]{{x - 7}}+{2^2}}\right) = x - 7 + 8 = x + 1[/math]
[math]\mathop{\lim}\limits_{x \to - 1}\frac{{x + 1}}{{\left({x + 1}\right)\left({\sqrt[3]{{{{\left({x - 7}\right)}^2}}}- 2\sqrt[3]{{x - 7}}+{2^2}}\right)}}= ...[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Sviatoslav "Спасибо" сказали:
helpmeplz
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 29 янв 2013, 14:04 
Не в сети
Одарённый
Зарегистрирован:
05 окт 2012, 13:20
Сообщений: 163
Cпасибо сказано: 43
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Sviatoslav писал(а):
[math]\left({\sqrt[3]{{x - 7}}+ 2}\right)\left({\sqrt[3]{{{{\left({x - 7}\right)}^2}}}- 2\sqrt[3]{{x - 7}}+{2^2}}\right) = x - 7 + 8 = x + 1[/math]
[math]\mathop{\lim}\limits_{x \to - 1}\frac{{x + 1}}{{\left({x + 1}\right)\left({\sqrt[3]{{{{\left({x - 7}\right)}^2}}}- 2\sqrt[3]{{x - 7}}+{2^2}}\right)}}= ...[/math]

ну всё,получилось

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 29 янв 2013, 14:07 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13561
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3622 раз в 3180 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
Предел прост, как валенок:
Изображение


Последний раз редактировалось Avgust 29 янв 2013, 14:14, всего редактировалось 1 раз.
Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 29 янв 2013, 14:10 
Не в сети
Одарённый
Зарегистрирован:
05 окт 2012, 13:20
Сообщений: 163
Cпасибо сказано: 43
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
это методом лопиталя?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 29 янв 2013, 14:11 
Не в сети
Одарённый
Зарегистрирован:
05 окт 2012, 13:20
Сообщений: 163
Cпасибо сказано: 43
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
не могли бы помочь еще с одним?
[math]\mathop {\lim }\limits_{x \to 1} \frac{{\sin (x - 1)}}{{{x^2} - 1}}[/math]
что делать с синусом?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 29 янв 2013, 14:20 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13561
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3622 раз в 3180 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
helpmeplz писал(а):
это методом лопиталя?


Нет. Это метод применения эквивалентных бесконечно малых функций (ЭБМ)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 29 янв 2013, 14:26 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13561
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3622 раз в 3180 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
[math]=\lim \limits_{t \to 0}\frac{\sin(t+1-1)}{(t+1)^2-1}=\lim \limits_{t \to 0}\frac{t}{t(t+2)}=\frac 12[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Avgust "Спасибо" сказали:
helpmeplz
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу 1, 2  След.  Страница 1 из 2 [ Сообщений: 13 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Вычислить предел выражения, используя 1 замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

syncedzz

7

453

13 окт 2022, 15:55

Решить предел. Второй замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

NuTysya

1

376

21 фев 2023, 09:54

Решить предел. Второй замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

NuTysya

10

649

21 фев 2023, 09:55

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Nadi_B

3

237

26 апр 2015, 10:39

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

aljke

3

282

07 апр 2015, 14:36

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Snuss

11

914

01 мар 2015, 17:53

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Cursedsmite

6

485

25 мар 2015, 15:49

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

lllulll

2

224

23 мар 2015, 08:05

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

yana05

2

284

31 мар 2015, 21:37

Предел при х->0-

в форуме Дифференциальное исчисление

Schwarte

2

256

03 янв 2021, 22:15


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 7


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved