| Математический форум Math Help Planet http://mathhelpplanet.com/ |
|
| Полное исследование функции http://mathhelpplanet.com/viewtopic.php?f=53&t=20641 |
Страница 1 из 1 |
| Автор: | Monrale [ 19 дек 2012, 18:22 ] |
| Заголовок сообщения: | Полное исследование функции |
Всем привет. Помогите решить чем сможите: 1) y= x^2 lnx 2) 1/3x^3-x^2-3x Критерии исследования: 1. Область определения 2. е(у) 3. Чётность, нечётность. 4. Переодичность. 5. Точки пересечения графика функции с осями координат. 6. Определить является ли эта функция непрерывной или разрывной. Если функция имеет точки розрыва, то найти их и установить их тип. 7. Исследуем функцию при помощи 1-ой производной (Находим её, находим критические точки 1-ого порядка, определяем промежутки монотонности и виды экстремума) 8. Исследуем функцию при помощи 2-ой производной (Находим её, находим критические точки 2-ого порядка, определяем промежутки выпуклости и вогнутости, точки перегиба) 9. Находим ассимптоты графика функции. 10. Строим график функции.
|
|
| Автор: | mad_math [ 19 дек 2012, 18:24 ] |
| Заголовок сообщения: | Re: Полное исследование функции |
Что самостоятельно сделали? |
|
| Автор: | Monrale [ 19 дек 2012, 18:27 ] |
| Заголовок сообщения: | Re: Полное исследование функции |
На данный момент, практически ничего не удается..а сдавать работу уже завтра |
|
| Автор: | Monrale [ 19 дек 2012, 19:59 ] |
| Заголовок сообщения: | Re: Полное исследование функции |
Прошу вас, помогите пожалуйста. Мне ох как трудно даётся это задание, а сдать его просто необходимо. |
|
| Автор: | mad_math [ 19 дек 2012, 20:03 ] |
| Заголовок сообщения: | Re: Полное исследование функции |
http://www.mathhelpplanet.com/static.php http://www.mathhelpplanet.com/viewtopic ... 92#p106992 |
|
| Автор: | Monrale [ 19 дек 2012, 20:05 ] |
| Заголовок сообщения: | Re: Полное исследование функции |
И на том..спасибо |
|
| Автор: | mad_math [ 19 дек 2012, 20:09 ] |
| Заголовок сообщения: | Re: Полное исследование функции |
Я могу только что-то подсказать. Делать всё за вас мне неинтересно. |
|
| Автор: | Monrale [ 19 дек 2012, 20:11 ] |
| Заголовок сообщения: | Re: Полное исследование функции |
Я всё понимаю. Спасибо.. |
|
| Автор: | mad_math [ 19 дек 2012, 20:24 ] |
| Заголовок сообщения: | Re: Полное исследование функции |
Ну так Вы хоть области определения по табличке найдите
|
|
| Автор: | Monrale [ 19 дек 2012, 21:04 ] |
| Заголовок сообщения: | Re: Полное исследование функции |
А что мне с них одних только, толку будет? У меня итак незачет..так тут еще и это не сдам |
|
| Страница 1 из 1 | Часовой пояс: UTC + 3 часа [ Летнее время ] |
| Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group http://www.phpbb.com/ |
|