Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 56 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.
Автор Сообщение
 Заголовок сообщения: Re: Исследовать функцию y=f(x) на непрерывность
СообщениеДобавлено: 12 дек 2012, 14:46 
Не в сети
Одарённый
Зарегистрирован:
25 ноя 2012, 08:31
Сообщений: 118
Cпасибо сказано: 15
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Теперь так?
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию y=f(x) на непрерывность
СообщениеДобавлено: 12 дек 2012, 14:57 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Последний раз: x=-2 тоже является вертикальной асимптотой.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию y=f(x) на непрерывность
СообщениеДобавлено: 12 дек 2012, 15:09 
Не в сети
Одарённый
Зарегистрирован:
25 ноя 2012, 08:31
Сообщений: 118
Cпасибо сказано: 15
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
mad_math писал(а):
Последний раз: x=-2 тоже является вертикальной асимптотой.


Сейчас?
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию y=f(x) на непрерывность
СообщениеДобавлено: 12 дек 2012, 15:16 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Мне эта викторина надоела.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию y=f(x) на непрерывность
СообщениеДобавлено: 12 дек 2012, 15:32 
Не в сети
Одарённый
Зарегистрирован:
25 ноя 2012, 08:31
Сообщений: 118
Cпасибо сказано: 15
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
mad_math писал(а):
Мне эта викторина надоела.


т.е. прямая которая у меня на графике до x=-2 тоже будет гипербола

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию y=f(x) на непрерывность
СообщениеДобавлено: 12 дек 2012, 15:50 
Не в сети
Одарённый
Зарегистрирован:
25 ноя 2012, 08:31
Сообщений: 118
Cпасибо сказано: 15
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
А случайно не так?
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию y=f(x) на непрерывность
СообщениеДобавлено: 12 дек 2012, 16:14 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
В словосочетании "вертикальная асимптота" слово "вертикальная" подразумевает, что располагается она вертикально, т.е. параллельно стенке, шкафу и перпендикулярно горизонту.
У вас обе прямые x=0 и x=-2 являются вертикальными асимптотами, что как бы намекает, что вблизи них график функции будет себя вести похожим образом. Разница лишь в том, что справа и слева от оси ординат график будет уходить в разные стороны (вверх и вниз), а справа и слева от x=-2 в одну сторону (вверх).

До сегодняшнего дня я считала, что вполне неплохо изъясняюсь по-русски, видимо это было ошибочное мнение.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию y=f(x) на непрерывность
СообщениеДобавлено: 12 дек 2012, 16:47 
Не в сети
Одарённый
Зарегистрирован:
25 ноя 2012, 08:31
Сообщений: 118
Cпасибо сказано: 15
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
?
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию y=f(x) на непрерывность
СообщениеДобавлено: 12 дек 2012, 16:54 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Почти. Только между -2 и 0 тоже график должен быть. Чем-то на кубическую параболу похожий.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию y=f(x) на непрерывность
СообщениеДобавлено: 12 дек 2012, 16:55 
Не в сети
Light & Truth
Зарегистрирован:
15 авг 2010, 15:54
Сообщений: 4482
Cпасибо сказано: 2406
Спасибо получено:
1660 раз в 1251 сообщениях
Очков репутации: 374

Добавить очки репутацииУменьшить очки репутации
я столько вариантов и представить себе не могла :lol:

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2, 3, 4, 5, 6  След.  Страница 5 из 6 [ Сообщений: 56 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Исследовать на непрерывность функцию

в форуме Пределы числовых последовательностей и функций, Исследования функций

solitudka

3

213

22 окт 2022, 17:05

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

Evgeny121

4

437

26 окт 2018, 23:05

Исследовать на непрерывность функцию

в форуме Пределы числовых последовательностей и функций, Исследования функций

__Milli__

4

691

18 ноя 2015, 18:02

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

RETU

8

503

23 июн 2018, 11:58

Исследовать на непрерывность функцию y = f(x)

в форуме Пределы числовых последовательностей и функций, Исследования функций

vika2020

1

335

05 янв 2017, 20:38

Исследовать на непрерывность функцию

в форуме Пределы числовых последовательностей и функций, Исследования функций

rfgbnfkbyf

6

547

27 дек 2015, 22:23

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

Kiryanovth

3

453

05 июн 2016, 16:07

исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

proswett

1

424

19 ноя 2018, 16:36

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

NEvOl

1

275

07 янв 2017, 11:32

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

solitudka

2

161

23 окт 2022, 17:05


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved