Математический форум Math Help Planet
http://mathhelpplanet.com/

Диффур
http://mathhelpplanet.com/viewtopic.php?f=38&t=34383
Страница 2 из 2

Автор:  Semen Bronza [ 13 июн 2014, 19:17 ]
Заголовок сообщения:  Re: Диффур

Если эта задача учебная, то Ваш вывод об ошибке в условии, возможно, правомерен. Однако, дифференциальное уравнение 2 порядка (и даже 1) имеет, как известно, бесконечное множество решений.

Автор:  lizasimpson [ 14 июн 2014, 14:32 ]
Заголовок сообщения:  Re: Диффур

Semen Bronza писал(а):
Решите уравнение методом вариации произвольных постоянных(Метод Лагранжа). Элементы этого метода Вы видите у pewpimkin. Или используйте операционное счисление.

Изображение
а как дальше?

Автор:  Wersel [ 14 июн 2014, 15:30 ]
Заголовок сообщения:  Re: Диффур

lizasimpson писал(а):
а как дальше?

А это что?

Автор:  Semen Bronza [ 14 июн 2014, 16:16 ]
Заголовок сообщения:  Re: Диффур

Вы, очевидно перешли от оригиналов к изображениям, в левой части; однако, при этом следовало бы задать начальные условия; кроме того, если начальные условия задать так: у(0)=0, у'(0)=0, то левая часть имеет вид p^2y(p)+5y(p), при этом следовало бы еще проверить, что заданные начальные условия определяют не особое решение. Что же касается вопроса "А как дальше?" - найдите изображение правой части.

Автор:  Wersel [ 14 июн 2014, 16:22 ]
Заголовок сообщения:  Re: Диффур

Данная задача,в таком виде, в принципе не решаема средствами операционного исчисления. ТС, зря тратите время. Решение Вам показали уже в 4-м посте.

Автор:  lizasimpson [ 15 июн 2014, 12:34 ]
Заголовок сообщения:  Re: Диффур

Что ж вы тут пытаетесь помогать,если ДАЖЕ НЕ знаете,ЧТО это?!

Страница 2 из 2 Часовой пояс: UTC + 3 часа [ Летнее время ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/