Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 6 ] 
Автор Сообщение
 Заголовок сообщения: Вероятность того, что изделие соответствует стандарту
СообщениеДобавлено: 23 ноя 2014, 01:38 
Не в сети
Начинающий
Зарегистрирован:
17 ноя 2014, 21:54
Сообщений: 12
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Помогите решить. Хотя бы примерный план. Совсем не понимаю

3. Вероятность того, что изделие соответствует стандарту, равна 0.94. Принятая система проверки изделий на стандартность обеспечивает выбраковку негодных изделий с вероятностью 0.95, а вероятность забраковать стандартное изделие равна 0.03. Найти вероятность того, что взятое наугад изделие будет признано стандартным.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача по теории вероятностей
СообщениеДобавлено: 23 ноя 2014, 10:00 
Не в сети
доцент
Зарегистрирован:
03 ноя 2013, 19:19
Сообщений: 3374
Cпасибо сказано: 577
Спасибо получено:
1000 раз в 861 сообщениях
Очков репутации: 153

Добавить очки репутацииУменьшить очки репутации
Elena_sh писал(а):
Помогите решить.


Ну почему опять забыто волшебное слово "пожалуйста"? :evil:

Формула полной вероятности.
А - взятое наугад изделие признано стандартным
Гипотезы:
Н1 - выбранное изделие - стандартное
Н2 - выбранное изделие - нестандартное.
Р(А)=Р(Н1)Р(А/Н1)+Р(Н2)Р(А/Н2)

Р(Н1)=0.94
Р(Н2)=1-0.94=...
Р(А/Н1)=1-0.03=...
Р(А/Н2)=1-0.95=...

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача по теории вероятностей
СообщениеДобавлено: 23 ноя 2014, 15:00 
Не в сети
Beautiful Mind
Зарегистрирован:
07 мар 2012, 08:11
Сообщений: 1433
Cпасибо сказано: 45
Спасибо получено:
193 раз в 179 сообщениях
Очков репутации: 73

Добавить очки репутацииУменьшить очки репутации
Elena_sh, зачем влезаете в чужую тему со своими вопросами?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача по теории вероятностей
СообщениеДобавлено: 23 ноя 2014, 15:19 
Не в сети
Начинающий
Зарегистрирован:
17 ноя 2014, 21:54
Сообщений: 12
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
venjar, спасибо за помощь! Замечание учту)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача по теории вероятностей
СообщениеДобавлено: 23 ноя 2014, 15:20 
Не в сети
Начинающий
Зарегистрирован:
17 ноя 2014, 21:54
Сообщений: 12
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
zer0 писал(а):
Elena_sh, зачем влезаете в чужую тему со своими вопросами?


Я никуда не лезу. Моё сообщение вполне подходит под тематику.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача по теории вероятностей
СообщениеДобавлено: 24 ноя 2014, 06:43 
Не в сети
Beautiful Mind
Зарегистрирован:
07 мар 2012, 08:11
Сообщений: 1433
Cпасибо сказано: 45
Спасибо получено:
193 раз в 179 сообщениях
Очков репутации: 73

Добавить очки репутацииУменьшить очки репутации
Elena_sh писал(а):
Я никуда не лезу. Моё сообщение вполне подходит под тематику.

Раз вы тупите не только в ТВ, проведу аналогию. Сидит Петя в кафе, ест. Тут к нему подсаживается незнакомая девушка (Лена) и ест из его тарелки. Петя возмущен, а Лена отвечает, что "ее действия отвечают назначению кафе, где люди едят". :(

Пришлось Пете объяснять, что хотя кафе дейчтвительно то место, где люди едят, но не надо лезть со своей ложкой в тарелку к незнакомым людям. Также не надо подсаживаться к компаниям, которые отмечают какое-то свое событие (день рождения, свадьбу или юбилей и т.д.).
Не знаю, дойдет ли объяснение до Лены... :)

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 6 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Вероятность того, что изделие е будет отбраковано

в форуме Теория вероятностей

rewrdre

1

261

26 дек 2020, 22:07

Какова вероятность того, что нереализованное изделие

в форуме Теория вероятностей

Tatiana_1

2

119

28 окт 2022, 20:56

Какова вероятность, что это изделие из I склада?

в форуме Теория вероятностей

Javid

7

836

07 ноя 2015, 20:55

Вероятность того, что деталь выйдет из строя после того как

в форуме Теория вероятностей

AmunRa

1

959

24 апр 2015, 18:16

Найдите вероятность того, что будет того же мнение

в форуме Теория вероятностей

usovousovo

5

456

18 янв 2023, 20:04

Найти вероятность того

в форуме Теория вероятностей

Vlad7535

7

631

02 апр 2020, 09:25

Вероятность того, что заготовка бракованная

в форуме Теория вероятностей

alximika

1

480

26 янв 2020, 23:17

Найти вероятность того, что шар чёрный

в форуме Теория вероятностей

sfanter

4

870

18 фев 2016, 10:03

Вероятность того, что успехов больше на k

в форуме Теория вероятностей

math_help_pls

4

537

05 окт 2018, 21:15

Вероятность того, что получится слово ЛОТ

в форуме Комбинаторика и Теория вероятностей

youi

10

757

03 май 2020, 20:40


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 7


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved