| Математический форум Math Help Planet http://mathhelpplanet.com/ |
|
| Векторные задачи http://mathhelpplanet.com/viewtopic.php?f=33&t=27267 |
Страница 3 из 3 |
| Автор: | mad_math [ 27 окт 2013, 23:52 ] |
| Заголовок сообщения: | Re: Векторные задачи |
[math]\vec{m}\vec{n}[/math] - это скалярное произведение, т.е. получаем [math]5\cdot\vec{m}\cdot\vec{n}=5\cdot|\vec{m}|\cdot|\vec{n}|\cdot\cos{\left(\vec{m},\vec{n}\right)}=5\cdot 2\cdot 1\cdot\cos{\frac{\pi}{3}}[/math] |
|
| Автор: | andr4e [ 28 окт 2013, 00:05 ] |
| Заголовок сообщения: | Re: Векторные задачи |
понял)) спасибо большое )) а про 19 что думаете? я затрудняюсь |
|
| Автор: | mad_math [ 28 окт 2013, 00:17 ] |
| Заголовок сообщения: | Re: Векторные задачи |
Думаю, что его можно решить так же, как и 14-е. То есть взять вектор [math]\vec{x}(a,b,c)[/math] с неизвестными пока координатами и расписать через координаты скалярное произведение [math]\vec{x}\cdot\vec{i}[/math] и векторное произведение [math]\vec{x} \times \vec{j}[/math]. |
|
| Автор: | andr4e [ 28 окт 2013, 00:20 ] |
| Заголовок сообщения: | Re: Векторные задачи |
если не затруднит, можете расписать? я сегодня этот выш мат уже 8 часов решаю, боюсь опять накосячу |
|
| Автор: | mad_math [ 28 окт 2013, 01:06 ] |
| Заголовок сообщения: | Re: Векторные задачи |
Если накосячите, я поправлю. |
|
| Страница 3 из 3 | Часовой пояс: UTC + 3 часа [ Летнее время ] |
| Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group http://www.phpbb.com/ |
|