Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 41 ]  На страницу Пред.  1, 2, 3, 4, 5  След.
Автор Сообщение
 Заголовок сообщения: Re: Построить множество решений системы линейных неравенств
СообщениеДобавлено: 24 окт 2013, 12:57 
Не в сети
Начинающий
Зарегистрирован:
23 окт 2013, 17:49
Сообщений: 41
Cпасибо сказано: 5
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
A (0;0)
B (0;10)
C (11;10)
D (11;0)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Построить множество решений системы линейных неравенств
СообщениеДобавлено: 24 окт 2013, 13:01 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22355
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
froska
Правильно.

Теперь рассмотрим графическую интерпретацию неравенства [math]5x-3y+15 \geqslant 0.[/math] Преобразуйте его так, чтобы слева оказалась только переменная [math]y.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Andy "Спасибо" сказали:
froska
 Заголовок сообщения: Re: Построить множество решений системы линейных неравенств
СообщениеДобавлено: 24 окт 2013, 13:08 
Не в сети
Начинающий
Зарегистрирован:
23 окт 2013, 17:49
Сообщений: 41
Cпасибо сказано: 5
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
3y≤5x+15


Последний раз редактировалось froska 24 окт 2013, 13:20, всего редактировалось 3 раз(а).
Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Построить множество решений системы линейных неравенств
СообщениеДобавлено: 24 окт 2013, 13:11 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22355
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
froska
Посмотрите внимательно. Во-первых, Вы умудрились из неравенства получить равенство. Во-вторых, неправильно вычислили коэффициент при переменной [math]x.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Построить множество решений системы линейных неравенств
СообщениеДобавлено: 24 окт 2013, 13:13 
Не в сети
Начинающий
Зарегистрирован:
23 окт 2013, 17:49
Сообщений: 41
Cпасибо сказано: 5
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
блин((( 3y≤5x+15

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Построить множество решений системы линейных неравенств
СообщениеДобавлено: 24 окт 2013, 13:31 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22355
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
froska
В конечном счёте, [math]y \leqslant \frac{5}{3}x+5.[/math] Какую область (множество точек координатной плоскости) задаёт это неравенство?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Построить множество решений системы линейных неравенств
СообщениеДобавлено: 24 окт 2013, 17:24 
Не в сети
Начинающий
Зарегистрирован:
23 окт 2013, 17:49
Сообщений: 41
Cпасибо сказано: 5
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
не могу дальше сообразить(

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Построить множество решений системы линейных неравенств
СообщениеДобавлено: 24 окт 2013, 18:11 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22355
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
froska
Выше или ниже прямой [math]y=\frac{5}{3}x+5[/math] лежит это множество точек?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Построить множество решений системы линейных неравенств
СообщениеДобавлено: 24 окт 2013, 18:30 
Не в сети
Начинающий
Зарегистрирован:
23 окт 2013, 17:49
Сообщений: 41
Cпасибо сказано: 5
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
выше относительно верхней прямой проходящей через ось ординат

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Построить множество решений системы линейных неравенств
СообщениеДобавлено: 24 окт 2013, 18:53 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22355
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
froska
Я у Вас спрашиваю про прямую [math]y=\frac{5}{3}x+5.[/math] Выше или ниже неё лежит множество точек, определяемое первым неравенством? Кстати, Вы можете изобразить её на уже имеющемся у Вас рисунке?

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2, 3, 4, 5  След.  Страница 3 из 5 [ Сообщений: 41 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Построить множество решений системы линейных неравенст

в форуме Аналитическая геометрия и Векторная алгебра

Roccat526

1

425

02 янв 2017, 20:53

Число целых решений неравенств как записать?

в форуме Алгебра

Lisuka

6

457

11 дек 2017, 13:59

Бесконечное множество решений

в форуме Алгебра

mjdoom2

2

359

26 мар 2016, 21:10

Найти множество решений уравнения

в форуме Линейная и Абстрактная алгебра

ivashenko

4

947

10 окт 2017, 12:13

Метод Гаусса, Бесконечное множество решений

в форуме Линейная и Абстрактная алгебра

iiwanc

7

588

28 янв 2018, 18:37

Системы уравнений и неравенств

в форуме Алгебра

SERGEYATAKA

0

205

12 окт 2015, 22:06

Системы уравнений и неравенств с модулем

в форуме Алгебра

fingolfin

4

508

25 окт 2015, 23:40

Существование решения системы неравенств

в форуме Линейная и Абстрактная алгебра

Konstanti[n]

2

300

06 янв 2016, 11:33

Системы линейных ДУ

в форуме Дифференциальное исчисление

sova36

3

317

25 дек 2014, 00:18

Системы линейных ДУ

в форуме Дифференциальные и Интегральные уравнения

sova36

0

346

24 дек 2014, 20:21


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved