| Математический форум Math Help Planet http://mathhelpplanet.com/ |
|
| Интеграл http://mathhelpplanet.com/viewtopic.php?f=19&t=39993 |
Страница 2 из 2 |
| Автор: | Andy [ 01 апр 2015, 22:41 ] |
| Заголовок сообщения: | Re: Интеграл |
IrinaG, по-моему, нужно найти интеграл от дифференциального бинома (первый случай): [math]\int x^\frac{1}{4}\left(-1+x^{\frac{5}{12}}\right)^{-1}dx.[/math] Используется, если не ошибаюсь, подстановка [math]t=\sqrt[12]{x}.[/math] |
|
| Автор: | IrinaG [ 01 апр 2015, 22:45 ] |
| Заголовок сообщения: | Re: Интеграл |
напишите что именно получится. |
|
| Автор: | Andy [ 01 апр 2015, 22:48 ] |
| Заголовок сообщения: | Re: Интеграл |
IrinaG писал(а): напишите что именно получится. IrinaG, Вам, только Вам флаг в руки! Вы ведь учитесь, а не я.
|
|
| Автор: | Andy [ 01 апр 2015, 22:54 ] |
| Заголовок сообщения: | Re: Интеграл |
IrinaG, могу начать: [math]x=t^{12},~dx=12t^{11}dt,~x^{\frac{1}{4}}=t^3,~x^{\frac{5}{12}}=t^5.[/math] Продолжайте дальше.
|
|
| Автор: | IrinaG [ 01 апр 2015, 22:55 ] |
| Заголовок сообщения: | Re: Интеграл |
спасибо хоть на этом |
|
| Автор: | Andy [ 01 апр 2015, 22:59 ] |
| Заголовок сообщения: | Re: Интеграл |
IrinaG, продолжайте. неужели моих выкладок Вам мало? Andy писал(а): IrinaG, могу начать: [math]x=t^{12},~dx=12t^{11}dt,~x^{\frac{1}{4}}=t^3,~x^{\frac{5}{12}}=t^5.[/math] Продолжайте дальше.
![]() |
|
| Автор: | Andy [ 01 апр 2015, 23:25 ] |
| Заголовок сообщения: | Re: Интеграл |
IrinaG, дальше получится интеграл, который нужно найти: [math]\int\frac{12t^{14}dt}{t^5-1}.([/math] Выделяйте теперь целую и дробную части. |
|
| Автор: | Andy [ 01 апр 2015, 23:25 ] |
| Заголовок сообщения: | Re: Интеграл |
IrinaG, дальше получится интеграл, который нужно найти: [math]\int\frac{12t^{14}dt}{t^5-1}.[/math] Выделяйте теперь целую и дробную части. |
|
| Автор: | Analitik [ 01 апр 2015, 23:30 ] |
| Заголовок сообщения: | Re: Интеграл |
Analitik писал(а): IrinaG
Выделить целую часть, поделив числитель на знаменатель углом. а затем |
|
| Автор: | Andy [ 01 апр 2015, 23:35 ] |
| Заголовок сообщения: | Re: Интеграл |
IrinaG, [math]\frac{t^{14}}{t^5-1}=t^9+t^4+\frac{t^4}{t^5-1}.[/math] Неужели ничего не видно?
|
|
| Страница 2 из 2 | Часовой пояс: UTC + 3 часа [ Летнее время ] |
| Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group http://www.phpbb.com/ |
|