Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 3 ] 
Автор Сообщение
 Заголовок сообщения: Интеграл
СообщениеДобавлено: 28 мар 2015, 09:31 
Не в сети
Одарённый
Зарегистрирован:
22 дек 2014, 18:15
Сообщений: 126
Cпасибо сказано: 33
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Добрый день!
Помогите пожалуйста найти интеграл
[math]\int \frac{ dx }{ x\sqrt({x^{2} } -9 )}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 28 мар 2015, 10:34 
Не в сети
Light & Truth
Зарегистрирован:
21 авг 2011, 14:49
Сообщений: 5279
Cпасибо сказано: 315
Спасибо получено:
2299 раз в 1966 сообщениях
Очков репутации: 520

Добавить очки репутацииУменьшить очки репутации
[math]\int {\frac{{dx}}{{x\sqrt {{x^2} - 9} }}} = \int {\frac{{dx}}{{{x^2}\sqrt {1 - \frac{9}{{{x^2}}}} }}} = \left| \begin{gathered} t = \frac{1}{x} \hfill \\ dt = - \frac{{dx}}{{{x^2}}} \hfill \\ \end{gathered} \right| = - \frac{1}{3}\int {\frac{{d\left( {3t} \right)}}{{\sqrt {1 - 9{t^2}} }}} = - \frac{1}{3}\arcsin 3t + C = - \frac{1}{3}\arcsin \frac{3}{x} + C[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Yurik "Спасибо" сказали:
Avgust
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 28 мар 2015, 10:49 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22360
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
Zed, если [math]x>0,[/math] то
[math]\int\frac{dx}{x\sqrt{x^2-9}}=\int\frac{dx}{x^2\sqrt{1-\left(\frac{3}{x}\right)^2}}=-\frac{1}{3}\int\frac{d\left(\frac{3}{x}\right)}{\sqrt{1-\left(\frac{3}{x}\right)^2}}=-\frac{1}{3}\arcsin{\frac{3}{x}}+C.[/math]

Подынтегральная функция является нечётной, поэтому при [math]x<0[/math] результатом интегрирования является чётное продолжение последнего выражения. Значит,
[math]\int\frac{dx}{x\sqrt{x^2-9}}=-\frac{1}{3}\arcsin{\frac{3}{|x|}}+C.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 3 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Криволинейный интеграл второго порядка(Интеграл работы)

в форуме Интегральное исчисление

Mephisto

3

274

06 июл 2022, 22:50

Неопределенный интеграл. скажите , как решать интеграл

в форуме Интегральное исчисление

natalee

3

708

18 янв 2015, 17:23

Неопределенный интеграл. скажите , как решать интеграл

в форуме Интегральное исчисление

natalee

1

825

18 янв 2015, 17:23

Определенный интеграл и несобственный интеграл

в форуме Интегральное исчисление

VxVxN

11

1024

14 апр 2015, 20:58

Вычислить интеграл, Кратный интеграл

в форуме Интегральное исчисление

PUFFIN

4

579

25 апр 2020, 15:39

Несобственный интеграл, двойной интеграл

в форуме Интегральное исчисление

alexmilki

8

620

16 апр 2017, 21:43

Интеграл

в форуме Интегральное исчисление

ilmir254

1

107

25 май 2020, 19:39

Интеграл

в форуме Интегральное исчисление

nazik

1

104

08 апр 2018, 16:32

Интеграл

в форуме Интегральное исчисление

Alexand

5

215

20 май 2020, 14:38

Интеграл

в форуме Интегральное исчисление

jagdish

2

389

11 фев 2019, 17:08


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved