Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
| Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
|
Страница 1 из 2 |
[ Сообщений: 12 ] | На страницу 1, 2 След. |
|
| Автор | Сообщение | |
|---|---|---|
| NightWolf |
|
|
|
Получилось [math]\[\frac{3}{2}\][/math] Это верное решение? Само решение: |при x = 3 функция не определена| = [math]\[\mathop {\lim }\limits_{a \to 3 + 0} \int\limits_a^4 {\frac{1}{{\sqrt[3]{{x - 3}}}}} dx = \mathop {\lim }\limits_{a \to 3 + 0} {\int\limits_a^4 {(x - 3)} ^{ - \frac{1}{3}}}dx = \left| \begin{gathered} x - 3 = t \hfill \\ dx = dt \hfill \\ t(4) = 1 \hfill \\ t(a) = a - 3 \hfill \\ \end{gathered} \right| = \mathop {\lim }\limits_{a \to 3 + 0} \int\limits_a^4 {{t^{ - \frac{1}{3}}}} dt = \mathop {\lim }\limits_{a \to 3 + 0} \frac{{{t^{ - \frac{1}{3} + 1}}}}{{ - \frac{1}{3} + 1}}|_{a - 3}^1 = \mathop {\lim }\limits_{a \to 3 + 0} \frac{{{t^{\frac{2}{3}}}}}{{\frac{2}{3}}}|_{a - 3}^1 = \frac{3}{2}\mathop {\lim }\limits_{a \to 3 + 0} {t^{\frac{2}{3}}}|_{a - 3}^1 = \frac{3}{2}\mathop {\lim }\limits_{a \to 3 + 0} ({1^{\frac{2}{3}}} - {(a - 3)^{\frac{2}{3}}}) = \left| {\frac{3}{2}(1 - {{(3 + 0 - 3)}^{\frac{2}{3}}}) = \frac{3}{2}(1 - {0^{\frac{2}{3}}}) = \frac{3}{2} \times 1} \right| = \frac{3}{2}\][/math] Последний раз редактировалось NightWolf 27 ноя 2013, 14:46, всего редактировалось 1 раз. |
||
| Вернуться к началу | ||
| mad_math |
|
|
|
NightWolf писал(а): Это верное решение? А где решение? Это только ответ. |
||
| Вернуться к началу | ||
| NightWolf |
|
|
|
mad_math писал(а): NightWolf писал(а): Это верное решение? А где решение? Это только ответ.Решение сейчас напишу, просто в тетради решал. А сам ответ-то хоть верный? |
||
| Вернуться к началу | ||
| mad_math |
|
|
|
У меня такой же ответ получился, и онлайн-калькулятор такой же ответ выдаёт.
|
||
| Вернуться к началу | ||
| NightWolf |
|
|
|
mad_math
Написал свое решение. Проверьте, пожалуйста, все ли корректно. |
||
| Вернуться к началу | ||
| mad_math |
|
|
|
NightWolf писал(а): Проверьте, пожалуйста, все ли корректно. Вполне. Хотя лично я не вижу необходимости в замене (но это кому как удобнее), и после перехода к интегралу от [math]t[/math] Вы забыли в нижней границе написать [math]a-3[/math] вместо [math]a[/math] (но это скорее всего просто опечатка). |
||
| Вернуться к началу | ||
| NightWolf |
|
|
|
mad_math писал(а): NightWolf писал(а): Проверьте, пожалуйста, все ли корректно. и после перехода к интегралу от [math]t[/math] Вы забыли в нижней границе написать [math]a-3[/math] вместо [math]a[/math] (но это скорее всего просто опечатка).Не понял, что конкретно мне надо заменить: добавить знак интеграла в пределе [math]\[\frac{3}{2}\mathop {\lim }\limits_{a \to 3 + 0} ({1^{\frac{2}{3}}} - {(a - 3)^{\frac{2}{3}}})\][/math] и указать в нижнем пределе [math]a-3[/math] или же в пределе [math]\[\frac{3}{2}\mathop {\lim }\limits_{a \to 3 + 0} ({1^{\frac{2}{3}}} - {(a - 3)^{\frac{2}{3}}})\][/math] заменить [math]a[/math] на [math]a-3[/math], или что-то другое? |
||
| Вернуться к началу | ||
| mad_math |
|
|
|
NightWolf писал(а): Не понял, что конкретно мне надо заменить: Вы когда сделали замену написали [math]...= \mathop {\lim }\limits_{a \to 3 + 0} \int\limits_a^4 {{t^{ - \frac{1}{3}}}} dt =...[/math], а должно быть [math]...= \mathop {\lim }\limits_{a \to 3 + 0} \int\limits_{a-3}^1 {{t^{ - \frac{1}{3}}}} dt =...[/math], так после замены переменной нижняя и верхняя границы интеграла меняются. |
||
| Вернуться к началу | ||
| NightWolf |
|
|
|
mad_math писал(а): NightWolf писал(а): Не понял, что конкретно мне надо заменить: Вы когда сделали замену написали [math]...= \mathop {\lim }\limits_{a \to 3 + 0} \int\limits_a^4 {{t^{ - \frac{1}{3}}}} dt =...[/math], а должно быть [math]...= \mathop {\lim }\limits_{a \to 3 + 0} \int\limits_{a-3}^1 {{t^{ - \frac{1}{3}}}} dt =...[/math], так после замены переменной нижняя и верхняя границы интеграла меняются.Спасибо большое за замечания. В остальном придраться больше не к чему (препод просто маразматичка, поэтому надо, чтобы все было безупречно)? |
||
| Вернуться к началу | ||
| mad_math |
|
|
|
NightWolf писал(а): В остальном придраться больше не к чему Я не нашла к чему придраться. А вот препод, если очень захочет, всё равно найдёт ![]() |
||
| Вернуться к началу | ||
| За это сообщение пользователю mad_math "Спасибо" сказали: NightWolf |
||
|
На страницу 1, 2 След. | [ Сообщений: 12 ] |
| Похожие темы | Автор | Ответы | Просмотры | Последнее сообщение |
|---|---|---|---|---|
|
Несобственный интеграл
в форуме Интегральное исчисление |
2 |
296 |
29 ноя 2017, 19:34 |
|
|
Несобственный интеграл
в форуме Интегральное исчисление |
5 |
305 |
26 окт 2017, 16:20 |
|
|
Несобственный интеграл
в форуме Интегральное исчисление |
0 |
217 |
06 май 2015, 14:54 |
|
|
Несобственный интеграл
в форуме Интегральное исчисление |
7 |
749 |
24 июн 2015, 08:42 |
|
|
Несобственный интеграл
в форуме Интегральное исчисление |
2 |
144 |
16 май 2020, 14:11 |
|
|
Несобственный интеграл
в форуме Интегральное исчисление |
1 |
544 |
10 май 2015, 15:07 |
|
|
Несобственный интеграл
в форуме Интегральное исчисление |
1 |
248 |
27 дек 2020, 22:56 |
|
|
Несобственный интеграл
в форуме Интегральное исчисление |
1 |
133 |
27 дек 2020, 22:43 |
|
|
Несобственный интеграл
в форуме Интегральное исчисление |
0 |
248 |
24 окт 2015, 11:54 |
|
|
Несобственный интеграл
в форуме Интегральное исчисление |
12 |
365 |
27 дек 2020, 22:49 |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Кто сейчас на конференции |
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4 |
| Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |