Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 6 ] 
Автор Сообщение
 Заголовок сообщения: Интеграл
СообщениеДобавлено: 05 окт 2013, 16:53 
Не в сети
Начинающий
Зарегистрирован:
05 окт 2013, 16:33
Сообщений: 2
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Туплю не по-детски. Помогите взять, голова не варит.
[math]\int\limits_{-\infty}^{+\infty}e^{-x^{2}}x^{2}dx[/math]
Пытаюсь брать по частям, не забываю, чему равен интеграл Пуассона-Эйлера, но у меня он расходится, а в учебнике ответ есть. Наваждение какое-то, и спросить не у кого(

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 05 окт 2013, 17:28 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 10:27
Сообщений: 7856
Cпасибо сказано: 629
Спасибо получено:
7057 раз в 5487 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
[math]\int e^{-x^{2}}x^{2}dx=-0,5\int e^{-x^{2}}xd(-x^{2}})=-0,5\int xd\left( e^{-x^{2}} \right)=...[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю andrei "Спасибо" сказали:
roma93
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 05 окт 2013, 17:37 
Не в сети
Начинающий
Зарегистрирован:
05 окт 2013, 16:33
Сообщений: 2
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
andrei
Всё гениальное - просто!) Спасибо!

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 05 окт 2013, 17:53 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 10:27
Сообщений: 7856
Cпасибо сказано: 629
Спасибо получено:
7057 раз в 5487 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Да всегда пожалуйста :)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 15 окт 2013, 06:11 
Не в сети
Начинающий
Зарегистрирован:
15 окт 2013, 05:51
Сообщений: 1
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Проверьте, пожалуйста, то что я нарешал.....
Если, есть ошибки, укажите на них!

Вложения:
11111.gif
11111.gif [ 149.93 Кб | Просмотров: 33 ]
Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 15 окт 2013, 09:24 
Не в сети
Light & Truth
Зарегистрирован:
23 авг 2010, 22:28
Сообщений: 4433
Cпасибо сказано: 565
Спасибо получено:
1075 раз в 952 сообщениях
Очков репутации: 315

Добавить очки репутацииУменьшить очки репутации
[math]\int \frac{4xdx}{\sqrt{81-9x^2}}=-\frac{4}{3} \int \frac{1}{2} (9-x^2)^{-\frac{1}{2}}d(9-x^2)=-\frac{2}{3} \frac{(9-x^2)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C[/math]

P.S. Для своих задач нужно создавать новую тему.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 6 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Криволинейный интеграл второго порядка(Интеграл работы)

в форуме Интегральное исчисление

Mephisto

3

274

06 июл 2022, 22:50

Неопределенный интеграл. скажите , как решать интеграл

в форуме Интегральное исчисление

natalee

3

707

18 янв 2015, 17:23

Неопределенный интеграл. скажите , как решать интеграл

в форуме Интегральное исчисление

natalee

1

824

18 янв 2015, 17:23

Определенный интеграл и несобственный интеграл

в форуме Интегральное исчисление

VxVxN

11

1024

14 апр 2015, 20:58

Вычислить интеграл, Кратный интеграл

в форуме Интегральное исчисление

PUFFIN

4

579

25 апр 2020, 15:39

Несобственный интеграл, двойной интеграл

в форуме Интегральное исчисление

alexmilki

8

620

16 апр 2017, 21:43

Интеграл

в форуме Интегральное исчисление

ilmir254

1

107

25 май 2020, 19:39

Интеграл

в форуме Интегральное исчисление

nazik

1

104

08 апр 2018, 16:32

Интеграл

в форуме Интегральное исчисление

Alexand

5

215

20 май 2020, 14:38

Интеграл

в форуме Интегральное исчисление

jagdish

2

389

11 фев 2019, 17:08


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved