Математический форум Math Help Planet
http://mathhelpplanet.com/

Неопределенный интеграл и хитрый erf[z]
http://mathhelpplanet.com/viewtopic.php?f=19&t=24434
Страница 1 из 1

Автор:  baduzzzer [ 19 май 2013, 21:50 ]
Заголовок сообщения:  Неопределенный интеграл и хитрый erf[z]

Изображение вот это выдает вольфрам. При попытке решать руками получается интеграл от 1/(e^(y^2)) по d(y) который и выдает erf[z].
Как решить?

Автор:  baduzzzer [ 19 май 2013, 21:51 ]
Заголовок сообщения:  Re: Неопределенный интеграл и хитрый erf[z]

начальный интеграл от функии: e^(-4x^2+6x+2)

Автор:  Avgust [ 19 май 2013, 22:13 ]
Заголовок сообщения:  Re: Неопределенный интеграл и хитрый erf[z]

Если интеграл определенный, то решаете численно. А так - все у Вас верно. Интеграл выражается через функцию ошибок. По-моему будет так:

[math]\int \frac {e^{\frac{17}{4}}}{e^{(4x-3)^2}} \, dx[/math]

Автор:  baduzzzer [ 20 май 2013, 07:45 ]
Заголовок сообщения:  Re: Неопределенный интеграл и хитрый erf[z]

thanks ^.^

Автор:  slog [ 20 май 2013, 11:05 ]
Заголовок сообщения:  Re: Неопределенный интеграл и хитрый erf[z]

Только не по dy, а на dy(первый пост). Ну говорят так говорят, общепринято

Страница 1 из 1 Часовой пояс: UTC + 3 часа [ Летнее время ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/