Математический форум Math Help Planet
http://mathhelpplanet.com/

Приведение к рациональной функции
http://mathhelpplanet.com/viewtopic.php?f=19&t=23340
Страница 1 из 2

Автор:  delmel [ 10 апр 2013, 20:19 ]
Заголовок сообщения:  Приведение к рациональной функции

Изображение

Автор:  Alexdemath [ 10 апр 2013, 22:07 ]
Заголовок сообщения:  Re: Приведение к рациональной функции

Подсказка для второго примера

[math]\sqrt[4]{x}\sqrt[4]{ \frac{ 4\sqrt[5]{x}+1 }{ \sqrt[5]{x} } }= \frac{\sqrt[4]{x}}{\sqrt[4]{\sqrt[5]{x}} }\sqrt[4]{4\sqrt[5]{x}+1}= \sqrt[5]{x}\sqrt[4]{4\sqrt[5]{x}+1}[/math]

Теперь сделайте замену [math]4\sqrt[5]{x}+1=t^4[/math].

Автор:  Alexdemath [ 10 апр 2013, 22:18 ]
Заголовок сообщения:  Re: Приведение к рациональной функции

В первом примере вынесите в из-под скобок в числителе и знаменателе [math]x+2[/math] и сделайте замену

[math]\frac{\sqrt{x^2+x-2}}{x+2}=t \quad \Rightarrow \quad x=\frac{2t^2+1}{1-t^2}\quad \Rightarrow \quad dx=\frac{6t\,dt}{(t^2-1)^2}[/math]

Автор:  delmel [ 11 апр 2013, 18:57 ]
Заголовок сообщения:  Re: Приведение к рациональной функции

Забыл сказать, что в последнем задании через диф. биномы нужно делать.
Только вот... не выполняются там условия ни для одной подстановки... что же делать?

И про первое задание не совсем понял Ваше предложение... как там x+2 вынести можно (может, мне не хватает элементарных знаний.. или же просто туплю, бывает :)); в общем, напишите, если не трудно, вынесение x+2.

И последний вопрос.

[math]\frac{{\left( {6\sqrt {{x^2} + x - 2} + x + 2} \right){{(3x + 1)}^2}}}{{(x + 1){{\left( { - 6\sqrt {{x^2} + x - 2} + x + 2} \right)}^3}}}[/math]

Можно ли поступить так — внести -6 под квадратный корень в знаменателе и внести 6 под корень в числителе, и потом сократить?
[math]\frac{{{{(3x + 1)}^2}}}{{(x + 1){{(\sqrt {36{x^2} + 36x - 72} + x + 2)}^2}}}[/math]
Вопрос, наверное, глупый... понятное дело, что так нельзя; кто-нибудь может объяснить, почему?

Автор:  pewpimkin [ 11 апр 2013, 21:48 ]
Заголовок сообщения:  Re: Приведение к рациональной функции

Во втором интеграле выполняется условие номер два и предложенная Вам замена как раз подходит для Вашего случая. В этом случае интеграл решается как раз как дифференциальный бином

Автор:  delmel [ 12 апр 2013, 05:03 ]
Заголовок сообщения:  Re: Приведение к рациональной функции

Сейчас попробую...

Автор:  Alexdemath [ 12 апр 2013, 15:24 ]
Заголовок сообщения:  Re: Приведение к рациональной функции

delmel писал(а):
Забыл сказать, что в последнем задании через диф. биномы нужно делать.
Только вот... не выполняются там условия ни для одной подстановки... что же делать?

Внимательно проверить ещё раз выполнимость этих условий. Напишите, как проверяли.

delmel писал(а):
И про первое задание не совсем понял Ваше предложение... как там x+2 вынести можно (может, мне не хватает элементарных знаний.. или же просто туплю, бывает :) ); в общем, напишите, если не трудно, вынесение x+2.

Я имел ввиду это преобразование

[math]\frac{{(6\sqrt{{x^2}+ x - 2}+ x + 2){{(3x + 1)}^2}}}{{(x + 1){{( - 6\sqrt{{x^2}+ x - 2}+ x + 2)}^3}}}= \frac{{(x + 2)\left({6\dfrac{{\sqrt{{x^2}+ x - 2}}}{{x + 2}}+ 1}\right){{(3x + 1)}^2}}}{{(x + 1){{(x + 2)}^3}{{\left({1 - 6\dfrac{{\sqrt{{x^2}+ x - 2}}}{{x + 2}}}\right)}^3}}}[/math]

Теперь сократите сокращаемое и делайте замену.

Автор:  delmel [ 15 апр 2013, 17:01 ]
Заголовок сообщения:  Re: Приведение к рациональной функции

Сделал.
Проверьте, пожалуйста.
Было
[math]\frac{{(x + 2)(6\frac{{\sqrt {{x^2} + x - 2} }}{{x + 2}} + 1){{(3x + 1)}^2}}}{{(x + 1){{(x + 2)}^3}{{(1 - 6\frac{{\sqrt {{x^2} + x - 2} }}{{x + 2}})}^3}}}[/math]
Сократил на [math]{x+2}[/math], получилось [math]\frac{{(6\frac{{\sqrt {{x^2} + x - 2} }}{{x + 2}} + 1){{(3x + 1)}^2}}}{{(x + 1){{(x + 2)}^2}{{(1 - 6\frac{{\sqrt {{x^2} + x - 2} }}{{x + 2}})}^3}}}[/math]
Делаю замену [math]\frac{{\sqrt {{x^2} + x - 2} }}{{x + 2}} = t \Rightarrow x = \frac{{2{t^2} + 1}}{{1 - {t^2}}} \Rightarrow dx = \frac{{6tdt}}{{{{({t^2} - 1)}^2}}}[/math]
Получаем
[math]\frac{{(6t + 1){{(3\frac{{2{t^2} + 1}}{{1 - {t^2}}} + 1)}^2}}}{{(\frac{{2{t^2} + 1}}{{1 - {t^2}}} + 1){{(\frac{{2{t^2} + 1}}{{1 - {t^2}}} + 2)}^2}{{(1 - 6t)}^3}}}*\frac{{6t}}{{{{({t^2} - 1)}^2}}}dt[/math]
Приводим к общему знаменателю в числителе и знаменателе.

[math]\frac{{6t*(6t + 1){{(\frac{{6{t^2} + 3 + 1 - {t^2}}}{{1 - {t^2}}})}^2}}}{{(\frac{{{t^2} + 2}}{{1 - {t^2}}}){{(\frac{3}{{1 - {t^2}}})}^2}{{(1 - 6t)}^3}}}\frac{1}{{{{({t^2} - 1)}^2}}}dt[/math]

Сносим [math]{1 - {t^2}}[/math] в знаменатель
[math]\frac{{6t*(6t + 1){{(5{t^2} + 4)}^2}}}{{(\frac{{{t^2} + 2}}{{1 - {t^2}}}){{(\frac{3}{{1 - {t^2}}})}^2}{{(1 - 6t)}^3}}}\frac{1}{{{{({t^2} - 1)}^4}}}dt[/math]

Теперь
[math]\frac{{(36{t^2} + 6t){{(5{t^2} + 4)}^2}}}{{9{{({t^2} - 1)}^2}(\frac{{{t^2} + 2}}{{1 - {t^2}}}){{(1 - 6t)}^3}}}dt\;\; = \;\;\frac{2}{3}\frac{{(6{t^2} + t){{(5{t^2} + 4)}^2}(1 - {t^2})}}{{{{({t^2} - 1)}^2}({t^2} + 2){{(1 - 6t)}^3}}}dt[/math]

И здесь остановка.. Что делать дальше?
Мы не можем применять метод Остроградского, ведь так?
Надо метод простейших дробей, но я не уверен... там

1) какие-то заморочки были с правильностью/неправильностью дроби;
2) у меня плохо записан он.. не знаю, к примеру, как быть с неполным многочленом в знаменателе и т.п.

Пожалуйста, ответьте на 1) и 2); если я совсем не прав, то напишите, что нужно делать..

Автор:  Alexdemath [ 15 апр 2013, 23:32 ]
Заголовок сообщения:  Re: Приведение к рациональной функции

Неверно упростили. Проверьте внимательно. Вот результаты Maple

Изображение

Цитата:
Мы не можем применять метод Остроградского, ведь так?
Надо метод простейших дробей, но я не уверен... там
1) какие-то заморочки были с правильностью/неправильностью дроби;
2) у меня плохо записан он.. не знаю, к примеру, как быть с неполным многочленом в знаменателе и т.п.

Не ленитесь читать теорию и хоть немного понимать написанное. Вот популярная брошюра по этому методу


Автор:  delmel [ 16 апр 2013, 04:19 ]
Заголовок сообщения:  Re: Приведение к рациональной функции

Да, так и есть... с упрощением напутал чуток; ну ладно.
О! Вот за брошюрку эту огромное спасибо Вам, всё удобно изложено :) будем разбираться.
Я не ленюсь, стараюсь ) ещё раз спасибо за помощь.

Страница 1 из 2 Часовой пояс: UTC + 3 часа [ Летнее время ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/