Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 10 ] 
Автор Сообщение
 Заголовок сообщения: Интеграл
СообщениеДобавлено: 19 янв 2013, 19:18 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
16 дек 2011, 19:00
Сообщений: 444
Откуда: Саратов
Cпасибо сказано: 63
Спасибо получено:
149 раз в 145 сообщениях
Очков репутации: 36

Добавить очки репутацииУменьшить очки репутации
помогите разобраться,всю голову сломала никак не могу найти этот интеграл((
[math]\int{\frac{{dx}}{{1 + \sin x}}}= &&&[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 19 янв 2013, 19:43 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 10:27
Сообщений: 7856
Cпасибо сказано: 629
Спасибо получено:
7057 раз в 5487 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
[math]1+sin(x)=cos^{2}( \frac{ x }{ 2 } )+2 \cdot cos( \frac{ x }{ 2 } ) \cdot sin( \frac{ x }{ 2 } )+sin^{2}( \frac{ x }{ 2 } )=\left( cos( \frac{ x }{ 2 } ) + sin( \frac{ x }{ 2 } ) \right)^{2}= cos^{2}( \frac{ x }{ 2 } )\left( 1+tg\left( \frac{ x }{ 2 } \right) \right)^{2}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю andrei "Спасибо" сказали:
mad_math, oksanakurb
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 19 янв 2013, 22:21 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
16 дек 2011, 19:00
Сообщений: 444
Откуда: Саратов
Cпасибо сказано: 63
Спасибо получено:
149 раз в 145 сообщениях
Очков репутации: 36

Добавить очки репутацииУменьшить очки репутации
andrei спасибо :Yahoo!:

И на этом мои вопросы всё же не закончились((
[math]\int{\frac{{dx}}{{x\sqrt{{x^2}+ 1}}}}[/math] что можно здесь сделать??

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 19 янв 2013, 23:04 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 10:27
Сообщений: 7856
Cпасибо сказано: 629
Спасибо получено:
7057 раз в 5487 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Ошибка,сейчас перепишу.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 19 янв 2013, 23:09 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Подстановку [math]x=\operatorname{tg}t,dx=\frac{dt}{\cos^2{t}}[/math]
Или подстановку [math]x=\operatorname{ch}t,dx=\operatorname{sh}tdt[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю mad_math "Спасибо" сказали:
oksanakurb
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 19 янв 2013, 23:12 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
[math]t=\operatorname{tg}\frac{x}{2},\sin{x}=\frac{2t}{t^2+1},dx=\frac{2dt}{t^2+1}[/math]

Тогда [math]\int\frac{dx}{1+\sin{x}}=\int\frac{2dt}{(t^2+1)\left(1+\frac{2t}{t^2+1}\right)}=2\int\frac{dt}{(t+1)^2}=...[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю mad_math "Спасибо" сказали:
oksanakurb
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 19 янв 2013, 23:24 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 10:27
Сообщений: 7856
Cпасибо сказано: 629
Спасибо получено:
7057 раз в 5487 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Проще всего во втором примере сделать подстановку [math]x=tg(y)[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 19 янв 2013, 23:52 
Не в сети
Light & Truth
Зарегистрирован:
23 авг 2010, 22:28
Сообщений: 4433
Cпасибо сказано: 565
Спасибо получено:
1075 раз в 952 сообщениях
Очков репутации: 315

Добавить очки репутацииУменьшить очки репутации
oksanakurb писал(а):
[math]\int{\frac{{dx}}{{x\sqrt{{x^2}+ 1}}}}[/math]


[math]\sqrt{x^2+1}=x+t[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Ellipsoid "Спасибо" сказали:
andrei
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 20 янв 2013, 00:01 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Ну тогда можно ещё и по Чебышёву:
[math]t=\sqrt{x^2+1},x^2=t^2-1,2tdt=2xdx\Rightarrow tdt=xdx[/math]

[math]\int\frac{dx}{x\sqrt{x^2+1}}=\int\frac{xdx}{x^2\sqrt{x^2+1}}=\int\frac{tdt}{(t^2-1)t}=...[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю mad_math "Спасибо" сказали:
Ellipsoid
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 20 янв 2013, 00:33 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 10:27
Сообщений: 7856
Cпасибо сказано: 629
Спасибо получено:
7057 раз в 5487 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
А ещё можно так [math]\int \frac{ dx }{ x\sqrt{1+x^{2}} }= \frac{ 1 }{ 2 }\int \frac{ dx^{2} }{ x^{2}\sqrt{1+x^{2}} }[/math] замена [math]\sqrt{1+x^{2}}=t[/math] и получаем [math]\frac{ 1 }{ 2 }\int \frac{ dx^{2} }{ x^{2}\sqrt{1+x^{2}} } =\int \frac{ dt }{ t^{2}-1 }=...[/math]
Виноват,не посмотрел,что уже все расписано. :oops:

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю andrei "Спасибо" сказали:
mad_math
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 10 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Криволинейный интеграл второго порядка(Интеграл работы)

в форуме Интегральное исчисление

Mephisto

3

274

06 июл 2022, 22:50

Неопределенный интеграл. скажите , как решать интеграл

в форуме Интегральное исчисление

natalee

3

707

18 янв 2015, 17:23

Неопределенный интеграл. скажите , как решать интеграл

в форуме Интегральное исчисление

natalee

1

824

18 янв 2015, 17:23

Определенный интеграл и несобственный интеграл

в форуме Интегральное исчисление

VxVxN

11

1024

14 апр 2015, 20:58

Вычислить интеграл, Кратный интеграл

в форуме Интегральное исчисление

PUFFIN

4

579

25 апр 2020, 15:39

Несобственный интеграл, двойной интеграл

в форуме Интегральное исчисление

alexmilki

8

620

16 апр 2017, 21:43

Интеграл

в форуме Интегральное исчисление

ilmir254

1

107

25 май 2020, 19:39

Интеграл

в форуме Интегральное исчисление

nazik

1

104

08 апр 2018, 16:32

Интеграл

в форуме Интегральное исчисление

Alexand

5

215

20 май 2020, 14:38

Интеграл

в форуме Интегральное исчисление

jagdish

2

389

11 фев 2019, 17:08


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved