Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 9 ] 
Автор Сообщение
 Заголовок сообщения: Двойной интеграл
СообщениеДобавлено: 09 сен 2012, 15:32 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Только начались эти темы и не сразу понимается... Как посторить эту область и какие границы получатся?

[math]\mathop{{\int\!\!\!\!\int}\mkern-22.9mu \bigcirc}\limits_{D}xy\,dxdy,\quad D\colon x+y=2,~ x^2+y^2=2y[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Двойной интеграл
СообщениеДобавлено: 09 сен 2012, 16:28 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
03 апр 2012, 03:09
Сообщений: 4113
Cпасибо сказано: 116
Спасибо получено:
1823 раз в 1515 сообщениях
Очков репутации: 379

Добавить очки репутацииУменьшить очки репутации
Проблема в том, что есть две области, ограниченные этими кривыми (прямая пересекает окружность). По какой именно области ведётся интегрирование?

Я не знаю, что такое двойной контурный интеграл, но я точно уверен, что это не он, а потому и обозначение будет другое: [math]\iint[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Двойной интеграл
СообщениеДобавлено: 09 сен 2012, 16:34 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Извините, опечатался. Здесь обычный двойной интеграл. А можно проинтегрировать по обеим областям отдельно?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Двойной интеграл
СообщениеДобавлено: 09 сен 2012, 16:39 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
03 апр 2012, 03:09
Сообщений: 4113
Cпасибо сказано: 116
Спасибо получено:
1823 раз в 1515 сообщениях
Очков репутации: 379

Добавить очки репутацииУменьшить очки репутации
The_Blur писал(а):
А можно проинтегрировать по обеим областям отдельно?


Ну да, пожалуйста. Сами эти области изобразить можете?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Двойной интеграл
СообщениеДобавлено: 09 сен 2012, 16:54 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Двойной интеграл
СообщениеДобавлено: 09 сен 2012, 17:13 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
03 апр 2012, 03:09
Сообщений: 4113
Cпасибо сказано: 116
Спасибо получено:
1823 раз в 1515 сообщениях
Очков репутации: 379

Добавить очки репутацииУменьшить очки репутации
Ну да :)

Начнём с интеграла по малому сегменту. Обычно двойные интегралы берут сведением к повторным интегралам. Если область можно задать как [math]\{a<x<b, f(x)<y<g(x)\}[/math], то сведение будет такое:

[math]\iint\limits_Dh(x,y)\,dxdy=\int\limits_a^b\,dx\int\limits_{f(x)}^{g(x)}h(x,y)\,dy[/math]. Здесь сначала берётся внутренний интеграл по переменной [math]y[/math], считая [math]x[/math] константой, а потом после подстановки пределов берётся внешний по [math]x[/math]. Попробуйте сами найти [math]a,b,f(x),g(x)[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Двойной интеграл
СообщениеДобавлено: 09 сен 2012, 18:22 
В сети
Последняя инстанция
Зарегистрирован:
24 апр 2010, 23:33
Сообщений: 3391
Cпасибо сказано: 246
Спасибо получено:
1010 раз в 872 сообщениях
Очков репутации: 273

Добавить очки репутацииУменьшить очки репутации
Так, но нужно расставить пределы интегрирования.Причем большую область нужно разбить на две.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Двойной интеграл
СообщениеДобавлено: 09 сен 2012, 19:38 
Не в сети
Свет и истина
Аватара пользователя
Зарегистрирован:
30 мар 2010, 11:03
Сообщений: 7479
Cпасибо сказано: 526
Спасибо получено:
3644 раз в 2901 сообщениях
Очков репутации: 745

Добавить очки репутацииУменьшить очки репутации
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Двойной интеграл
СообщениеДобавлено: 10 сен 2012, 00:37 
В сети
Последняя инстанция
Зарегистрирован:
24 апр 2010, 23:33
Сообщений: 3391
Cпасибо сказано: 246
Спасибо получено:
1010 раз в 872 сообщениях
Очков репутации: 273

Добавить очки репутацииУменьшить очки репутации
pewpimkin, У Вас для малой области интеграл получается отрицательным?
См.картинку.
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 9 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Двойной интеграл

в форуме Интегральное исчисление

danashabetova

1

288

03 апр 2019, 14:23

Двойной интеграл

в форуме Интегральное исчисление

lizasimpson

2

242

14 дек 2014, 19:30

Двойной интеграл

в форуме Интегральное исчисление

Beeblgo

11

318

06 июн 2022, 13:07

Двойной интеграл

в форуме Интегральное исчисление

Julius Caesar

1

201

29 май 2022, 00:25

Двойной интеграл

в форуме Интегральное исчисление

Magauran

1

346

26 дек 2016, 20:02

Двойной интеграл

в форуме Интегральное исчисление

Integral1996

4

619

13 дек 2014, 17:07

Двойной интеграл

в форуме Интегральное исчисление

183jpeeg

2

231

17 июн 2018, 19:49

Двойной интеграл.

в форуме Интегральное исчисление

Sykes

6

263

01 мар 2021, 17:45

Двойной интеграл

в форуме Интегральное исчисление

Katrina7

1

193

29 авг 2018, 10:04

Двойной интеграл

в форуме Интегральное исчисление

tanyhaftv

3

235

11 июн 2018, 21:41


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 5


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved