| Математический форум Math Help Planet http://mathhelpplanet.com/ |
|
| Построить тело и вычислить его объём с помощью интеграла http://mathhelpplanet.com/viewtopic.php?f=19&t=17920 |
Страница 1 из 1 |
| Автор: | ronald13 [ 21 авг 2012, 14:33 ] |
| Заголовок сообщения: | Построить тело и вычислить его объём с помощью интеграла |
Помогите, пожалуйста построить данное тело и найти объем: [math]z = y^2, \quad z - 2 + y^2 = 0, \quad x = 0, \quad x = 4.[/math] |
|
| Автор: | Alexdemath [ 21 авг 2012, 15:53 ] |
| Заголовок сообщения: | Re: Вычислить объем тела |
Решая систему из первых двух уравнений, найдёте [math]y_{1,2}=\pm1[/math]. Следовательно, множество точек (обозначим через [math]T[/math]), которые ограничивают данные поверхности, есть [math]T= \Bigl\{0\leqslant x\leqslant 4,~ -1\leqslant y\leqslant 1,~ y^2\leqslant z\leqslant 2-y^2\Bigr\}[/math] Тогда искомый объём можно найти с помощью тройного интеграла: [math]\begin{aligned}V &= \iiint\limits_T dxdydz = \int\limits_0^4 {dx} \int\limits_{ - 1}^1 dy \int\limits_{y^2}^{2 - y^2}dz= 4\int\limits_{ - 1}^1 \bigl(2-y^2-y^2\bigr)dy= 8\int\limits_{ - 1}^1 \bigl(1 - y^2\bigr)dy= \\ &=16\int\limits_0^1 \bigl(1 - y^2\bigr)dy= \left. {16\!\left(y-\frac{y^3}{3}\right)} \right|_0^1 = 16\!\left(1 - \frac{1}{3}\right) = 16 \cdot \frac{2}{3} = \frac{32}{3}\end{aligned}[/math] Вот чертёж данного тела в прямоугольной системе координат |
|
| Страница 1 из 1 | Часовой пояс: UTC + 3 часа [ Летнее время ] |
| Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group http://www.phpbb.com/ |
|