Математический форум Math Help Planet
http://mathhelpplanet.com/

координаты центра масс однородной плоской фигуры
http://mathhelpplanet.com/viewtopic.php?f=19&t=16834
Страница 1 из 1

Автор:  Merhaba [ 09 май 2012, 17:05 ]
Заголовок сообщения:  координаты центра масс однородной плоской фигуры

Добрый День!!! Помогите Пожалуйста найти координаты центра масс однородной плоской фигуры:

1) [math]r\leqslant a(1+sin\varphi )[/math]

2) [math]x^2+y^2\leqslant a^2, |y|\leqslant xtg\alpha , \alpha \in (0;\frac{\pi }{2})[/math]

Формулы такие:
[math]x_c=\frac{\iiint\limits_G x\,dxdydz}{\iiint\limits_G \,dxdydz[/math]

[math]y_c=\frac{\iiint\limits_G y\,dxdydz}{\iiint\limits_G \,dxdydz[/math]

[math]z_c=\frac{\iiint\limits_G z\,dxdydz}{\iiint\limits_G \,dxdydz[/math]


Какие будут пределы интегрирования? :) Помогите Пожалуйста! :blush:

Автор:  Prokop [ 13 май 2012, 15:45 ]
Заголовок сообщения:  Re: координаты центра масс однородной плоской фигуры

Вы используете не те формулы. Вам нужны формулы для однородной плоской фигуры.

Страница 1 из 1 Часовой пояс: UTC + 3 часа [ Летнее время ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/