Математический форум Math Help Planet
http://mathhelpplanet.com/

Площадь части сферы
http://mathhelpplanet.com/viewtopic.php?f=19&t=16225
Страница 1 из 1

Автор:  Merhaba [ 18 апр 2012, 15:43 ]
Заголовок сообщения:  Площадь части сферы

Добрый День!!! :) Помогите Пожалуйста найти площадь части сферы [math]x^2+y^2+z^2=2a^2[/math], заключенной внутри конуса [math]x^2+y^2=z^2[/math]

Автор:  Alexdemath [ 18 апр 2012, 22:22 ]
Заголовок сообщения:  Re: Площадь части сферы

Считайте для верхней полусферы, а результат умножьте на 2.

[math]\begin{gathered}D_{xy}= \left\{(x,y)\in\mathbb{R}^2\colon x^2+y^2\leqslant a^2\right\} \hfill \\z = \sqrt {2{a^2} - {x^2} - {y^2}} \hfill \\z'_x= \frac{x}{{\sqrt {2{a^2} - {x^2} - {y^2}} }},\quad z'_y = \frac{{ - y}}{{\sqrt {2{a^2} - {x^2} - {y^2}} }} \hfill \\{z'_x}^2 = \frac{{{x^2}}}{{2{a^2} - {x^2} - {y^2}}},\quad {z'_y}^2 = \frac{{{y^2}}}{{2{a^2} - {x^2} - {y^2}}} \hfill \\ds = \sqrt {1 + {z'_x}^2 + {z'_y}^2}\,dxdy = \sqrt {1 + \frac{{{x^2} + {y^2}}}{{2{a^2} - {x^2} - {y^2}}}}\,dxdy = \frac{{\sqrt 2 a\,dxdy}}{{\sqrt {2{a^2} - {x^2} - {y^2}} }} \hfill \end{gathered}[/math]

Теперь нужно вспомнить стандартную формулу:

[math]\begin{aligned}\frac{S}{2}&= \iint\limits_{D_{xy}}ds= \sqrt 2 a\iint\limits_{x^2+y^2\leqslant a^2} \frac{dxdy}{\sqrt {2a^2-x^2-y^2}} = \left\{ \begin{gathered}x = r\cos \varphi , \hfill \\ y = r\sin \varphi \hfill \\ \end{gathered} \right\} = \sqrt 2 a\int\limits_0^{2\pi }d\varphi \int\limits_0^a {\frac{r\,dr}{{\sqrt {2{a^2} - {r^2}} }}} = \\ &= -\pi \sqrt 2 a\int\limits_0^a (2a^2-r^2)^{-1/2}d(2a^2-r^2)= \left. { - \pi \sqrt 2 a\frac{{{{(2{a^2} - {r^2})}^{1 - 1/2}}}}{{1 - 1/2}}} \right|_{r=0}^{r=a}=\\ &= -2\pi \sqrt 2 a\left( {\sqrt {2{a^2} - {a^2}} - \sqrt {2{a^2}} } \right) = - 2\pi \sqrt 2 a\bigl(a - \sqrt 2 a\bigr) = 2\pi \bigl(2 - \sqrt2\bigr){a^2} \\ &\boxed{S = 4\pi\bigl(2 - \sqrt 2\bigr){a^2}} \end{aligned}[/math]

Автор:  Merhaba [ 11 май 2012, 23:48 ]
Заголовок сообщения:  Re: Площадь части сферы

Alexdemath
Помогите Пожалуйста построить чертёж :)

Страница 1 из 1 Часовой пояс: UTC + 3 часа [ Летнее время ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/