| Математический форум Math Help Planet http://mathhelpplanet.com/ |
|
| area http://mathhelpplanet.com/viewtopic.php?f=19&t=14507 |
Страница 1 из 1 |
| Автор: | jagdish [ 08 фев 2012, 17:32 ] |
| Заголовок сообщения: | area |
If [math]A[/math] be the area bounded by the curve [math]f(x) = \left|\frac{\sin x+\cos x}{x}\right|[/math] and X- axis and line [math]x=\pi[/math] and [math]x=3\pi[/math]. Then Max. and Min. value of [math]A[/math] is |
|
| Автор: | igor_vis [ 10 фев 2012, 12:24 ] |
| Заголовок сообщения: | Re: area |
Min. value of A is 0 f(x)=(sin(x)+cos(x))/x (if (sin(x)+cos(x))/x > 0) f(x)=-(sin(x)+cos(x))/x (if (sin(x)+cos(x))/x < 0) max(f(x)) <= sqrt(2)/pi = 0,450158158 - first approximation max(f(x)) = 0,372706795 (by Ms Excel) |
|
| Автор: | jagdish [ 10 фев 2012, 19:20 ] |
| Заголовок сообщения: | Re: area |
would you like to explain it to me Thanks |
|
| Автор: | igor_vis [ 12 фев 2012, 08:26 ] |
| Заголовок сообщения: | Re: area |
(sin(x)+cos(x)) =(sin(x)+sin(pi - x)) = 2*sin((x+(pi/2 - x))/2)*cos((x-(pi/2 - x))/2) = =2*sin(pi/4)*cos(x-pi/4) = 2*sqrt(2)/2*cos(x-pi/4) = sqrt(2)*cos(x-pi/4) <= sqrt(2) (sin(x)+cos(x)) / x <= sqrt(2) / min(x) = sqrt(2) / pi - first approximation for the exact solution of the problem we have to find the derivative of the function and equate it to zero f(x)=|g(x)| min(f(x))=0 if g(x) = 0 if cos(x-pi/4)= 0 (for example x-pi/4 = 3pi/2 => x = 7pi/8 => f(x)=g(x)=0 max(f(x)) -??? g(x)=(sin(x)+cos(x)) / x = sqrt(2)*cos(x-pi/4) / x g`(x)= sqrt(2)*(-sin(x-pi/4)*x-cos(x-pi/4))/ x^2 g`(x)=0 if ctg(x-pi/4)=-x to get the exact answer, we must find solutions ctg(x-pi/4)=-x I can not solve this equation, I'm sorry |
|
| Страница 1 из 1 | Часовой пояс: UTC + 3 часа [ Летнее время ] |
| Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group http://www.phpbb.com/ |
|