Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 44 ]  На страницу 1, 2, 3, 4, 5  След.
Автор Сообщение
 Заголовок сообщения: Уравнение
СообщениеДобавлено: 10 ноя 2015, 10:03 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
03 дек 2013, 20:43
Сообщений: 486
Cпасибо сказано: 320
Спасибо получено:
12 раз в 12 сообщениях
Очков репутации: 7

Добавить очки репутацииУменьшить очки репутации
Решите уравнение [math]2^{\left[ \log_{2}{x} \right] }[/math] [math]+x ^{\left[ \log_{2}{x} \right] }[/math] [math]= 2[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение
СообщениеДобавлено: 10 ноя 2015, 10:45 
Не в сети
Последняя инстанция
Зарегистрирован:
08 апр 2015, 12:21
Сообщений: 7837
Cпасибо сказано: 244
Спасибо получено:
2864 раз в 2644 сообщениях
Очков репутации: 502

Добавить очки репутацииУменьшить очки репутации
Что означают квадратные скобки? Целую часть? Если это простые скобки, то ответ очевиден: х=1

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение
СообщениеДобавлено: 10 ноя 2015, 10:45 
Не в сети
Последняя инстанция
Зарегистрирован:
06 дек 2014, 09:11
Сообщений: 7078
Cпасибо сказано: 115
Спасибо получено:
1670 раз в 1513 сообщениях
Очков репутации: 284

Добавить очки репутацииУменьшить очки репутации
Так как [math]x>0[/math], то [math]x ^{\left[ \log_{2}{x}\right]}>0[/math] и для [math]\left[ \log_{2}{x}\right][/math] остается вот совсем небогатый выбор значений.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение
СообщениеДобавлено: 10 ноя 2015, 10:50 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
03 дек 2013, 20:43
Сообщений: 486
Cпасибо сказано: 320
Спасибо получено:
12 раз в 12 сообщениях
Очков репутации: 7

Добавить очки репутацииУменьшить очки репутации
[x] да целую часть

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение
СообщениеДобавлено: 10 ноя 2015, 11:01 
Не в сети
Beautiful Mind
Зарегистрирован:
07 авг 2013, 15:21
Сообщений: 1027
Откуда: г. Липецк
Cпасибо сказано: 190
Спасибо получено:
126 раз в 118 сообщениях
Очков репутации: 16

Добавить очки репутацииУменьшить очки репутации
swan писал(а):
Так как [math]x>0[/math], то [math]x ^{\left[ \log_{2}{x}\right]}>0[/math] и для [math]\left[ \log_{2}{x}\right][/math] остается вот совсем небогатый выбор значений.

x1=1. А чему равно x2?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение
СообщениеДобавлено: 10 ноя 2015, 11:02 
Не в сети
Последняя инстанция
Зарегистрирован:
08 апр 2015, 12:21
Сообщений: 7837
Cпасибо сказано: 244
Спасибо получено:
2864 раз в 2644 сообщениях
Очков репутации: 502

Добавить очки репутацииУменьшить очки репутации
nicat писал(а):
[x] да целую часть

Тогда ещё от 1 до 2 подходят под это уравнение.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю michel "Спасибо" сказали:
nicat
 Заголовок сообщения: Re: Уравнение
СообщениеДобавлено: 10 ноя 2015, 11:06 
Не в сети
Последняя инстанция
Зарегистрирован:
06 дек 2014, 09:11
Сообщений: 7078
Cпасибо сказано: 115
Спасибо получено:
1670 раз в 1513 сообщениях
Очков репутации: 284

Добавить очки репутацииУменьшить очки репутации
michel писал(а):
Тогда ещё от 0 до 1 подходят под это уравнение.


От 1 до 2 хотели сказать. Но ещё есть одно, [math]\left[ \log_{2}{x}\right][/math] может и отрицательным быть, правда несильно...

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю swan "Спасибо" сказали:
nicat
 Заголовок сообщения: Re: Уравнение
СообщениеДобавлено: 10 ноя 2015, 11:13 
Не в сети
Последняя инстанция
Зарегистрирован:
06 дек 2014, 09:11
Сообщений: 7078
Cпасибо сказано: 115
Спасибо получено:
1670 раз в 1513 сообщениях
Очков репутации: 284

Добавить очки репутацииУменьшить очки репутации
victor1111 писал(а):
x1=1. А чему равно x2?

victor1111, вы это у меня спрашиваете? Но я вообще не в курсе, что вы себе там понимаете под [math]x_1[/math] и [math]x_2[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение
СообщениеДобавлено: 10 ноя 2015, 11:18 
Не в сети
Последняя инстанция
Зарегистрирован:
08 апр 2015, 12:21
Сообщений: 7837
Cпасибо сказано: 244
Спасибо получено:
2864 раз в 2644 сообщениях
Очков репутации: 502

Добавить очки репутацииУменьшить очки репутации
swan писал(а):
michel писал(а):
Тогда ещё от 1 до 2 подходят под это уравнение.


Но ещё есть одно, [math]\left[ \log_{2}{x}\right][/math] может и отрицательным быть, правда несильно...

Есть ещё [math]\frac{ 2 }{ 3 }[/math]


Последний раз редактировалось michel 10 ноя 2015, 12:06, всего редактировалось 2 раз(а).
Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение
СообщениеДобавлено: 10 ноя 2015, 11:21 
Не в сети
Beautiful Mind
Зарегистрирован:
07 авг 2013, 15:21
Сообщений: 1027
Откуда: г. Липецк
Cпасибо сказано: 190
Спасибо получено:
126 раз в 118 сообщениях
Очков репутации: 16

Добавить очки репутацииУменьшить очки репутации
swan писал(а):
victor1111 писал(а):
x1=1. А чему равно x2?

victor1111, вы это у меня спрашиваете? Но я вообще не в курсе, что вы себе там понимаете под [math]x_1[/math] и [math]x_2[/math].

Исходное уравнение имеет два корня.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу 1, 2, 3, 4, 5  След.  Страница 1 из 5 [ Сообщений: 44 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Уравнение гиперболы, зная фокус, уравнение директрисы,< асим

в форуме Аналитическая геометрия и Векторная алгебра

Marlex12s1d

1

1027

10 апр 2021, 12:44

Решить уравнение уравнение с обособленными переменными

в форуме Дифференциальное исчисление

Juliiii

2

431

17 май 2022, 21:03

Уравнение

в форуме Алгебра

Kiselev_FSO

12

706

08 фев 2019, 18:40

Уравнение

в форуме Тригонометрия

Kristinadefa

1

315

04 май 2015, 15:50

Уравнение

в форуме Алгебра

detectiveDeny

10

1055

04 май 2015, 22:10

Уравнение

в форуме Алгебра

Mobile

2

227

28 апр 2015, 19:21

Уравнение

в форуме Тригонометрия

nicat

8

482

23 апр 2015, 13:15

Re: Уравнение

в форуме Алгебра

nicat

7

465

25 апр 2015, 18:59

Диф уравнение

в форуме Дифференциальные и Интегральные уравнения

alla1501

1

146

23 май 2016, 20:17

Уравнение

в форуме Алгебра

nicat

1

262

27 апр 2015, 20:01


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved