Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
| Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
|
Страница 1 из 2 |
[ Сообщений: 11 ] | На страницу 1, 2 След. |
|
| Автор | Сообщение | |
|---|---|---|
| victory19933 |
|
|
|
помогите пож-та... есть ответ даже : а<-1/3 |
||
| Вернуться к началу | ||
| radix |
|
|
|
Сначала нужно использовать схему:
[math]\left| f(x) \right| \leqslant a \Leftrightarrow \left\{\!\begin{aligned}& f(x) \leqslant a \\ & f(x) \geqslant -a \end{aligned}\right.[/math] После этого в каждом неравенстве переносите всё в левую часть, приводите к общему знаменателю. Получится [math]\left\{\!\begin{aligned}& \frac{x^2-2x}{3a-4x}\geqslant 0 \\ & \frac{4x^2+8x-12a}{3a-4x}\leqslant 0 \end{aligned}\right. \Leftrightarrow[/math] [math]\Leftrightarrow\left[\!\begin{aligned}& \left\{\!\begin{aligned}& 3a-4x>0 \\ & x(x-2) \geqslant 0 \\ & x^2+2x-3a \leqslant 0 \end{aligned}\right. \\ & \left\{\!\begin{aligned}& 3a-4x<0 \\ & x(x-2) \leqslant 0 \\ & x^2+2x-3a \geqslant 0 \end{aligned}\right. \end{aligned}\right.[/math] Очевидно, что первая из этих систем не будет иметь решением данный интервал (см.второе неравенство) Осталось только найти, при каких а вторая система будет иметь решением данный интервал. |
||
| Вернуться к началу | ||
| За это сообщение пользователю radix "Спасибо" сказали: mad_math, sfanter, victory19933 |
||
| radix |
|
|
|
Уточню: для выполнения условий задачи необходимо, чтобы первая система не имела решений, выходящих за пределы интервала [0;2].
И ещё для решения может быть полезно преобразование: [math]x^2+2x-3a=(x+1)^2-(3a+1)[/math] |
||
| Вернуться к началу | ||
| За это сообщение пользователю radix "Спасибо" сказали: mad_math, victory19933 |
||
| pewpimkin |
|
|
|
У меня получилось а<=0
|
||
| Вернуться к началу | ||
| За это сообщение пользователю pewpimkin "Спасибо" сказали: mad_math |
||
| radix |
|
|
|
pewpimkin писал(а): У меня получилось а<=0 У меня тоже так сначала получилось. При -1/3<a<0 в решении кроме интервала [0;2] появляется второй интервал (его даёт первая система). А нас интересуют значения а, при которых всё решение целиком представляет собой интервал [0;2]. |
||
| Вернуться к началу | ||
| За это сообщение пользователю radix "Спасибо" сказали: mad_math |
||
| victory19933 |
|
|
|
radix
Спасибо вам большое! теперь буду знать такой прием. Есть еще одна подобная задачка, решаю таким же способом, опять ничего не получается viewtopic.php?f=10&t=34562 Если не трудно, подскажите что здесь делать |
||
| Вернуться к началу | ||
| pewpimkin |
|
|
|
Да, решил только что графически. Еще один интервал там появляется между корнями параболы x^2+2x-3a
|
||
| Вернуться к началу | ||
| За это сообщение пользователю pewpimkin "Спасибо" сказали: mad_math, victory19933 |
||
| victory19933 |
|
|
|
pewpimkin
а можете графический метод сюда выложить? (или просто скажите какие оси брали в этой задаче?также: "а" и "х"?) |
||
| Вернуться к началу | ||
| pewpimkin |
|
|
|
Оси аОх . Решения, если найду выложу, но все то же самое , что в другом неравенстве
|
||
| Вернуться к началу | ||
| За это сообщение пользователю pewpimkin "Спасибо" сказали: victory19933 |
||
| victory19933 |
|
|
|
pewpimkin
нуу там не совсем то же самое, в одном из неравенств нету а |
||
| Вернуться к началу | ||
|
На страницу 1, 2 След. | [ Сообщений: 11 ] |
| Похожие темы | Автор | Ответы | Просмотры | Последнее сообщение |
|---|---|---|---|---|
|
Задача с параметром
в форуме Алгебра |
10 |
382 |
10 авг 2019, 15:52 |
|
|
Задача с параметром
в форуме Линейная и Абстрактная алгебра |
3 |
403 |
26 окт 2016, 12:14 |
|
|
Задача с параметром
в форуме Тригонометрия |
3 |
324 |
28 ноя 2017, 19:28 |
|
|
Задача с параметром
в форуме Алгебра |
1 |
206 |
18 июл 2019, 17:00 |
|
|
Задача с параметром
в форуме Алгебра |
17 |
520 |
06 авг 2024, 19:37 |
|
|
Задача с параметром
в форуме Алгебра |
2 |
256 |
11 апр 2019, 03:25 |
|
|
Задача с параметром
в форуме Алгебра |
5 |
464 |
11 янв 2018, 21:23 |
|
|
Задача с параметром ЕГЭ
в форуме Алгебра |
15 |
376 |
11 янв 2024, 23:18 |
|
|
Задача с параметром
в форуме Алгебра |
10 |
514 |
24 апр 2018, 18:27 |
|
|
Задача с параметром 2
в форуме Алгебра |
4 |
244 |
23 фев 2022, 11:59 |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Кто сейчас на конференции |
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4 |
| Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |