Математический форум Math Help Planet
http://mathhelpplanet.com/

Как решить логорифм
http://mathhelpplanet.com/viewtopic.php?f=10&t=31790
Страница 1 из 1

Автор:  Dinis [ 21 мар 2014, 11:23 ]
Заголовок сообщения:  Как решить логорифм

Изображение

Автор:  Yurik [ 21 мар 2014, 11:45 ]
Заголовок сообщения:  Re: Как решить логорифм

[math]\begin{gathered} \frac{{{{\lg }^2}5 - 2\lg 5\lg 2 - 3{{\lg }^2}2}}{{2\left( {\lg 5 - 3\lg 2} \right)}} = \frac{{{{\left( {\lg 5 - \lg 2} \right)}^2} - 4{{\lg }^2}2}}{{2\left( {\lg 5 - \lg 8} \right)}} = \frac{{{{\lg }^2}\frac{5}{2} - 4{{\lg }^2}2}}{{2\lg \frac{5}{8}}} = \hfill \\ = \frac{{\left( {\lg \frac{5}{2} - 2\lg 2} \right)\left( {\lg \frac{5}{2} + 2\lg 2} \right)}}{{2\lg \frac{5}{8}}} = \frac{{\lg \frac{5}{8}\lg 10}}{{2\lg \frac{5}{8}}} = \frac{1}{2} \hfill \\ \end{gathered}[/math]

Так у меня получилось.

Автор:  Dinis [ 21 мар 2014, 12:12 ]
Заголовок сообщения:  Re: Как решить логорифм

Спасибо, только я что то не могу понять преобразование в числителе(

Автор:  Dinis [ 21 мар 2014, 12:18 ]
Заголовок сообщения:  Re: Как решить логорифм

А именно куда девается 2lg5xlg2?

Автор:  Yurik [ 21 мар 2014, 12:20 ]
Заголовок сообщения:  Re: Как решить логорифм

[math]{a^2} - 2ab - 3{b^2} = {\left( {a - b} \right)^2} - 4{b^2}[/math]

И как разность квадратов.

Автор:  Dinis [ 21 мар 2014, 12:32 ]
Заголовок сообщения:  Re: Как решить логорифм

точно!)спасибо

Автор:  radix [ 21 мар 2014, 12:34 ]
Заголовок сообщения:  Re: Как решить логорифм

Или так:
[math]\frac{ lg^25-3lg5lg2+lg5lg2-3lg^22 }{ 2(lg5+3lg2) }= \frac{ lg5(lg5-3lg2)+lg2(lg5-3lg2) }{ 2(lg5+3lg2) } =[/math]
[math]=\frac{ 1 }{ 2 }(lg5+lg2)=\frac{ 1 }{ 2 }lg10 =\frac{ 1 }{ 2 }[/math]
:)

Автор:  radix [ 22 мар 2014, 10:34 ]
Заголовок сообщения:  Re: Как решить логорифм

radix писал(а):
Или так:
[math]\frac{ lg^25-3lg5lg2+lg5lg2-3lg^22 }{ 2(lg5+3lg2) }= \frac{ lg5(lg5-3lg2)+lg2(lg5-3lg2) }{ 2(lg5+3lg2) } =[/math]
[math]=\frac{ 1 }{ 2 }(lg5+lg2)=\frac{ 1 }{ 2 }lg10 =\frac{ 1 }{ 2 }[/math]
:)

* Во всех знаменателях вместо плюса должен быть минус по условию.

Страница 1 из 1 Часовой пояс: UTC + 3 часа [ Летнее время ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/