Математический форум Math Help Planet
http://mathhelpplanet.com/

Задача на совместную работу
http://mathhelpplanet.com/viewtopic.php?f=10&t=24467
Страница 1 из 1

Автор:  Fsq [ 20 май 2013, 20:55 ]
Заголовок сообщения:  Задача на совместную работу

Две бригады работая вместе могут выполнить работу за 8 дней. Если бы работало [math]\frac{ 2 }{ 3 }[/math] работников первой бригады и [math]\frac{4}{5}[/math] второй бригады,то работа была бы выполнена за [math]11 \frac{ 1 }{ 4 }[/math]. За сколько дней работа была бы выполнена,если бы две бригады работали по отдельности?

Пробую.
Пусть работа первой бригады - [math]x[/math]
Второй бригады [math]y[/math]
тогда
[math]\left\{\!\begin{aligned}& x+y=8 \\& \frac{ 2 }{ 3 }x+ \frac{ 4 }{ 5} y= \frac{ 45 }{ 4 }\end{aligned}\right.[/math]

[math]x=8-y[/math]

[math]\frac{ 16 }{ 3 }- \frac{ 2}{ 3 } y+ \frac{ 4 }{5 }y= \frac{ 45 }{ 4 }[/math]

[math]\frac{ 2 }{ 15 }y= \frac{71}{ 12 }[/math]

[math]24y=1065[/math]

[math]y=44,375[/math]

Где у меня ошибка?

Автор:  Avgust [ 20 май 2013, 21:28 ]
Заголовок сообщения:  Re: Бригада работников

Рассуждать лучше так:

[math]x \, - \,[/math] производительность первой бригады
[math]y \, - \,[/math] производительность второй бригады

Поскольку о характере работы нам ничего неизвестно и по условию задачи ее определять не требуют, то примем всю выполненную работу за 1

Ясно, что чем больше бригад работает и чем выше их производительность, тем меньше времени требуется на выполнение работы. Поэтому:

[math]8=\frac{1}{x+y}[/math]

[math]\frac{45}{4}=\frac{1}{\frac 23 \cdot x+\frac 45 \cdot y}[/math]

Решаем систему и находим: [math]x=\frac{1}{12}\, ; \quad y=\frac{1}{24}[/math]

Следовательно, первая бригада выполнит всю работу за [math]T_1=\frac{1}{\frac {1}{12}}=12 \,[/math] дней

Вторая бригада, естественно, - за [math]T_2=\frac{1}{\frac {1}{24}}=24 \,[/math] дня.

Автор:  shmax3 [ 20 май 2013, 21:32 ]
Заголовок сообщения:  Re: Задача на совместную работу

Путаете работу и мощность или время и объем работы (я так и не разобрался)

Пусть [math]x[/math] - мощность первой бригады, [math]y[/math] - второй бригады. Объем работы [math]S[/math].
Время - это объем на мощность делить. Мощности складываются. А найти нужно [math]S/x[/math] и [math]S/y[/math].

Автор:  Fsq [ 20 май 2013, 21:48 ]
Заголовок сообщения:  Re: Бригада работников

Все более,чем понятно
Спасибо Вам

Страница 1 из 1 Часовой пояс: UTC + 3 часа [ Летнее время ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/