Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 4 ] 
Автор Сообщение
 Заголовок сообщения: Числа Стирлинга II рода - вопрос по доказательству
СообщениеДобавлено: 12 июн 2019, 13:34 
Не в сети
Профи
Зарегистрирован:
10 окт 2018, 22:06
Сообщений: 421
Cпасибо сказано: 53
Спасибо получено:
122 раз в 115 сообщениях
Очков репутации: 13

Добавить очки репутацииУменьшить очки репутации
Добрый день.
Имеется задача:
Доказать, используя комбинаторные методы, что

[math]\begin{Bmatrix} n \\ n-2 \end{Bmatrix} = \begin{pmatrix} n+1 \\ 4 \end{pmatrix} + 2\begin{pmatrix} n \\ 4 \end{pmatrix}[/math]

Доказательство (?): [math]n[/math]-элементное множество можно разбить на [math]n - 2[/math] подмножеств так:
а) [math]n - 3[/math] одноэлементных подмножества и одно трехэлементное;
б) [math]n - 4[/math] одноэлементных и 2 двуэлементных.

В первом случае имеем [math]\begin{pmatrix} n \\ 3 \end{pmatrix}[/math] возможностей, а во втором -

[math]3 \cdot \begin{pmatrix} n \\ 4 \end{pmatrix}[/math], итого

[math]\begin{Bmatrix} n \\ n-2 \end{Bmatrix} = \begin{pmatrix} n \\ 3 \end{pmatrix} + 3\begin{pmatrix} n \\ 4 \end{pmatrix} = \begin{pmatrix} n \\ 3 \end{pmatrix} + \begin{pmatrix} n \\ 4 \end{pmatrix} + 2\begin{pmatrix} n \\ 4 \end{pmatrix} =\begin{pmatrix} n+1 \\ 4 \end{pmatrix} + 2\begin{pmatrix} n \\ 4 \end{pmatrix}[/math]

Собственно вопрос.
Использование свойства биномиальных коэффициентов:

[math]\begin{pmatrix} n \\ k \end{pmatrix} + \begin{pmatrix} n \\ k+1 \end{pmatrix} = \begin{pmatrix} n+1 \\ k+1 \end{pmatrix}[/math]

- в переходе [math]3\begin{pmatrix} n \\ 4 \end{pmatrix} = \begin{pmatrix} n \\ 4 \end{pmatrix} + 2\begin{pmatrix} n \\ 4 \end{pmatrix}[/math]

- ведь это элемент доказательства алгебраического, а не комбинаторного ( в левой части общей формулы кол-во элементов было равно [math]n[/math], а в правой - [math]n + 1[/math], как-то логически не вяжется...)

Или я придираюсь?

Спасибо.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Числа Стирлинга II рода - вопрос по доказательству
СообщениеДобавлено: 13 июн 2019, 00:56 
Не в сети
Light & Truth
Зарегистрирован:
28 мар 2014, 23:59
Сообщений: 4554
Cпасибо сказано: 387
Спасибо получено:
332 раз в 313 сообщениях
Очков репутации: 32

Добавить очки репутацииУменьшить очки репутации
Ну, это просто была алгебраическая комбинаторика )))

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Числа Стирлинга II рода - вопрос по доказательству
СообщениеДобавлено: 13 июн 2019, 01:23 
Не в сети
Beautiful Mind
Зарегистрирован:
06 июн 2013, 16:17
Сообщений: 1522
Cпасибо сказано: 81
Спасибо получено:
440 раз в 410 сообщениях
Очков репутации: 122

Добавить очки репутацииУменьшить очки репутации
Равенство биномиальных коэффициентов, о котором вы говорите, тоже имеет комбинаторное доказательство. А использование фактов типа [math]x+x=2x[/math] в комбинаторном доказательстве допускается, на мой взгляд.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Числа Стирлинга II рода - вопрос по доказательству
СообщениеДобавлено: 13 июн 2019, 09:33 
Не в сети
Профи
Зарегистрирован:
10 окт 2018, 22:06
Сообщений: 421
Cпасибо сказано: 53
Спасибо получено:
122 раз в 115 сообщениях
Очков репутации: 13

Добавить очки репутацииУменьшить очки репутации
Спасибо.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 4 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Вопрос по доказательству из учебника по АТЧ

в форуме Теория чисел

seraphimt

2

318

04 авг 2015, 23:51

Комбинаторика - доказательство - числа стирлинга

в форуме Дискретная математика, Теория множеств и Логика

deadfak

1

120

30 ноя 2018, 00:37

Использование факториалов при выводе формулы Стирлинга

в форуме Ряды

Alisa_3

1

229

02 апр 2016, 23:48

Действительные числа. Вопрос

в форуме Теория чисел

AlexanderH

23

924

15 июл 2016, 10:15

Вопрос про натуральные числа

в форуме Дискретная математика, Теория множеств и Логика

MoiseyFonGogenhaim

6

52

13 сен 2019, 13:40

Вопрос о получении любого числа

в форуме Размышления по поводу и без

dorofeev

22

1134

23 сен 2017, 15:22

Вопросы к доказательству свойства НОД

в форуме Теория чисел

Sviatoslav

11

1045

01 сен 2013, 21:13

Сжатие большого целого числа. Вопрос возможности

в форуме Дискуссионные математические проблемы

FiRED-8

6

797

02 ноя 2011, 01:01

На пути к доказательству теоремы Чевы

в форуме Геометрия

aybek

1

325

15 мар 2013, 12:09

Замечание по "Абсурдному" доказательству ВТФ viktorshirshov

в форуме Палата №6

ivashenko

69

1527

07 май 2016, 18:43


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2019 MathHelpPlanet.com. All rights reserved