Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 5 ] 
Автор Сообщение
 Заголовок сообщения: Cумма сочетаний
СообщениеДобавлено: 06 окт 2017, 21:16 
Не в сети
Начинающий
Зарегистрирован:
06 окт 2017, 20:56
Сообщений: 2
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Изображение
Уже три дня бьюсь с 26 вариантом...никак не могу решить

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Cумма сочетаний
СообщениеДобавлено: 06 окт 2017, 21:40 
Не в сети
Light & Truth
Зарегистрирован:
23 авг 2010, 22:28
Сообщений: 4260
Cпасибо сказано: 533
Спасибо получено:
1056 раз в 934 сообщениях
Очков репутации: 311

Добавить очки репутацииУменьшить очки репутации
Кто придумывает такие идиотские задачи? Куда естественнее решать их с помощью бинома Ньютона и дифференцирования (или интегрирования - в зависимости от типа суммы). А свойства сочетаний (кстати, зачем они?) запомнить крайне трудно.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Cумма сочетаний
СообщениеДобавлено: 07 окт 2017, 01:00 
Не в сети
Beautiful Mind
Зарегистрирован:
06 июн 2013, 16:17
Сообщений: 1332
Cпасибо сказано: 72
Спасибо получено:
383 раз в 354 сообщениях
Очков репутации: 105

Добавить очки репутацииУменьшить очки репутации
Эта сумма сводится к [math]\sum_{k=1}^nkC_n^k=n2^{n-1}[/math] и [math]\sum_{k=1}^nC_n^k=2^n-1[/math]. Первую сумму, как уже говорилось, можно посчитать с помощью дифференцирования [math]f(x)=(1+x)^n[/math] и подстановки [math]x=1[/math]. На этой странице есть несколько других доказательств (на английском). Например, вот комбинаторное доказательство. С одной стороны, [math]\sum_{k=1}^nkC_n^k[/math] есть сумма количеств элементов во всех подмножествах [math]\{1,\dots,n\}[/math]. С другой стороны, все такие подмножества (их [math]2^n[/math]) можно разбить на неупорядоченные пары [math]\{S,\{1,\dots,n\}\setminus S\}[/math]. Таких пар будет [math]2^{n-1}[/math], а общее количество элементов в каждой паре есть [math]n[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Cумма сочетаний
СообщениеДобавлено: 07 окт 2017, 20:16 
Не в сети
Начинающий
Зарегистрирован:
06 окт 2017, 20:56
Сообщений: 2
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Через бином решать не могу. Лектор требует через преобразования избавиться от коэффициентов, вынести общий множитель, получив сумму сочетаний с одинаковым n (на лекции был разобран пример, где коэффициенты сократились с факториалами в знаменателе). Как избавиться от них в своем варианте, я понятия не имею...

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Cумма сочетаний
СообщениеДобавлено: 07 окт 2017, 20:58 
Не в сети
Beautiful Mind
Зарегистрирован:
06 июн 2013, 16:17
Сообщений: 1332
Cпасибо сказано: 72
Спасибо получено:
383 раз в 354 сообщениях
Очков репутации: 105

Добавить очки репутацииУменьшить очки репутации
[math]\sum_{k=1}^n(4k-1)C_n^k=4\sum_{k=1}^nkC_n^k-\sum_{k=1}^nC_n^k[/math].

Проверьте, что [math]kC_n^k=nC_{n-1}^{k-1}[/math]. Тогда [math]\sum_{k=1}^nkC_n^k=n\sum_{k=0}^{n-1}C_{n-1}^k[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю 3D Homer "Спасибо" сказали:
Alex_andra, Andy
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Делимость сочетаний

в форуме Дискретная математика, Теория множеств и Логика

Dosaev

1

243

04 дек 2011, 00:20

Сумма сочетаний

в форуме Дискретная математика, Теория множеств и Логика

Easy4G

1

267

24 дек 2015, 02:08

Свойства сочетаний

в форуме Комбинаторика и Теория вероятностей

kaban4ig

6

329

03 фев 2017, 23:03

Сумма сочетаний

в форуме Дискретная математика, Теория множеств и Логика

vladiserk

19

411

02 окт 2017, 13:07

Найти сумму сочетаний

в форуме Дискретная математика, Теория множеств и Логика

HirurG

11

158

28 мар 2018, 13:06

Подсчёт количества сочетаний

в форуме Комбинаторика и Теория вероятностей

blbulyandavbulyan

8

294

23 фев 2018, 16:21

Упростить ряд с числом сочетаний

в форуме Ряды

darthanyan

2

63

07 ноя 2018, 14:25

Найти сумму сочетаний , 22 пример

в форуме Дискретная математика, Теория множеств и Логика

vladiserk

4

241

01 окт 2017, 14:34

Найти сумму сочетаний , 21 вариант

в форуме Дискретная математика, Теория множеств и Логика

vladiserk

10

251

02 окт 2017, 14:41

Использование сочетаний для вычисления вероятностей

в форуме Комбинаторика и Теория вероятностей

Midoyan

1

71

23 окт 2018, 02:32


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2018 MathHelpPlanet.com. All rights reserved