Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 4 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 4 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Где можно использовать это свойство
Нигде 25%  25%  [ 2 ]
Везде 25%  25%  [ 2 ]
В специальных областях 50%  50%  [ 4 ]
Всего голосов : 8
Автор Сообщение
 Заголовок сообщения: Об одном свойстве натуральных чисел
СообщениеДобавлено: 11 ноя 2015, 17:44 
Не в сети
Начинающий
Зарегистрирован:
11 ноя 2015, 17:37
Сообщений: 4
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Случайно обнаружил любопытное свойство натуральных чисел. Проверил математические энциклопедии, но нигде не встретил упоминание об этом свойстве натуральных чисел. Многие считают, что число 0 входит в натуральные числа. Другие считают, что число 0 не является натуральным числом. Так вот, обнаруженное свойство натуральных чисел выполняется только для натурального ряда чисел, в который число 0 не входит, и не выполняется для натурального ряда чисел, в который включено число 0.
Рассмотрим операции сложения и вычитания на отрезке ряда натуральных чисел 1, 2, ..., N. Пусть X и Y - натуральные числа от 1 до N.
Обозначим через Z - результат сложения натуральных чисел X и Y. Потребуем от натурального числа Z выполнения неравенства 0 < Z < N + 1, то есть Z должно быть натуральным числом от 1 до N.
Z = X + Y
Если Z < N + 1, то наше требование выполнено. Минимальная величина суммы в этом случае равна 2, а максимальная величина суммы равна N. Таким образом, число Z в этом случае изменяется от 2 до N.
Если Z > N, то наше требование не выполнено. В этом случае вычтем из суммы число N. Получим Z = X + Y - N. Поскольку максимальная величина суммы X + Y равна 2*N, то Z = X + Y - N не превосходит N. Поскольку вычитание числа N из суммы X + Y мы производим только в том случае если эта сумма больше N (равна N + 1, N + 2, ..., 2 * N), то минимальная величина Z = X + Y - N = N + 1 - N = 1. Таким образом, число Z изменяется от 1 до N.
Рассмотрим нахождения чисел X или Y из числа Z.
Здесь возможны два варианта:
1) X = Z - Y = X + Y - Y = X, это обычное вычитание.
2) X = Z - Y = X + Y - N - Y = X - N. Поскольку максимальная величина числа X равна N, то X - N < 1. Следовательно, для получения правильного результата мы должны прибавить к разнице число N. В этом случае X = Z - Y = X + Y - N - Y + N = X.
В действительности нам не нужно знать о том, вычитали мы из суммы Z число N или не вычитали. Достаточно проверять результат вычитания Z - Y на выполнение условия Z - Y < 1. Если неравенство выполняется, то необходимо прибавить число N. Если неравенство не выполняется, то ничего делать не надо.
Аналогично обстоит дело с вычитанием натуральных чисел.
В целом, число ноль не нужно для операций вычитания и сложения с числами отрезка натурального ряда от 1 до N. Достаточно проверять результат операции на условие 0 < Z < N + 1. Если результат операции меньше единицы, то к результату операции необходимо прибавить число N. Если результат операции больше N, то из результата операции необходимо вычесть число N.
Это свойство выполняется только для отрезка ряда натуральных чисел от 1 до N и не выполняется для отрезка ряда чисел от 0 до N, а также для любого отрезка ряда натуральных чисел, начинающегося с числа большего 1.
Прошу математиков и других специалистов высказать свое мнение о важности обнаруженного свойства. Согласен на шнобелевскую премию, поэтому прошу высказываться по-существу. В конце дискуссии я покажу вариант использования этого свойства в практической деятельности людей.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Об одном свойстве натуральных чисел
СообщениеДобавлено: 12 ноя 2015, 23:01 
Не в сети
Мастер
Зарегистрирован:
24 янв 2013, 22:19
Сообщений: 216
Cпасибо сказано: 54
Спасибо получено:
15 раз в 15 сообщениях
Очков репутации: 3

Добавить очки репутацииУменьшить очки репутации
Смешались в куче кони, люди...
Здесь свойства порядковых целых чисел незаконно переданы количественным целым числам.
Различие свойств каждого в отдельности огромно и об этом полезно знать и не забывать.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Об одном свойстве натуральных чисел
СообщениеДобавлено: 14 ноя 2015, 21:15 
Не в сети
Начинающий
Зарегистрирован:
11 ноя 2015, 17:37
Сообщений: 4
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Большое спасибо за ответ. Однако я не понял, чем Вам новое свойство натуральных чисел не нравится. Возможно здесь что-то не так сказано. Но само свойство существует. О чем оно говорит. Я не знаю как это теоретически объяснить. На практике это свойство я применяю с очень большой эффективностью.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Об одном свойстве натуральных чисел
СообщениеДобавлено: 15 ноя 2015, 22:13 
Не в сети
Мастер
Зарегистрирован:
24 янв 2013, 22:19
Сообщений: 216
Cпасибо сказано: 54
Спасибо получено:
15 раз в 15 сообщениях
Очков репутации: 3

Добавить очки репутацииУменьшить очки репутации
В кашу вникать никакого желания нет. Однако, дам наводки:
99 руб. в лев. кармане, 1 коп. в правом --- сумей у друга обменять на 100 руб. купюру.
Ведь 1 коп. только начала отсчет сотому рублю, но до полного руб. не хватает чего-то.
Сотый (порядковое число) еще не сотня целиком (количественное число).
Другой пример. 1 яеваря 2000 г. по-твоему начало 3-го тысячелетия, а по-моему только первый день из 366 дней до полного
завершения 2-х тысячелетый н. э.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Об одном свойстве натуральных чисел
СообщениеДобавлено: 16 ноя 2015, 11:46 
Не в сети
Начинающий
Зарегистрирован:
11 ноя 2015, 17:37
Сообщений: 4
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
ДОПОЛНЕНИЕ К ОСНОВНОМУ ТЕКСТУ
Ранее я не обо всех особенностях натуральных чисел от 1 до N рассказал.
Арифметика довольна странная.
Пусть X, Y и Z - натуральные числа от 1 до N.
1) X + N > N следовательно X + N - N = X
2) X - N < 1 следовательно X - N + N = X
3) X - X < 1 следовательно X - X + N = N
4) N + N > N следовательно N + N - N = N
5) N - N < 1 следовательно N - N + N = N
6) X + Y = Z существует при всех X, Y, Z
7) X - Y = Z существует при всех X, Y, Z
8) Если X + Y = Z, то X = Z - Y и Y = Z - X при всех X, Y, Z
9) Если X - Y = Z, то X = Z + Y и Y = Z - X при всех X, Y, Z
Как видим, число N выполняет функцию нуля и в то же время больше нуля.
Зададимся вопросом: как наглядно описать представленную арифметику.
По моему мнению, адекватным описанием является арифметика на замкнутой линии. Возьмем обычное изображение числового ряда в виде прямой линии, имеющей начало в виде нуля и числа 1, 2, ..., N через равные промежутки. Это хорошо известная числовая ось с заданным направлением.
Обрежем эту числовую ось по числу N и свернем так, чтобы число N оказалось на месте нуля. В результате у нас образуется замкнутая линия с числами от 1 до N.
Операции сложения будем осуществлять перемещением по линии вправо, а операции вычитания будем осуществлять перемещением по линии влево. Теперь при выполнении операций сложения и вычитания не нужно вычитать число N или прибавлять число N.
Таким образом, описанная нами арифметика является арифметикой на замкнутой линии. Обычная арифметика является арифметикой на прямой линии.
Пример:
N = 10, замкнутая линия от 1 до 10. Положительное направление вправо, отрицательное направление влево.
2 + 3 = ?
Имеем 2, начинаем движение вправо с отсчетом от следующего за 2 числа. Получим 3, 4, 5. Итого 2 + 3 = 5
2 + 10 = ?
Имеем 2, начинаем движение вправо с отсчетом от следующего за 2 числа. Получим 3, 4, 5, 6, 7, 8, 9, 10, 1, 2. Итого 2 + 10 = 2
4 - 3 = ?
Имеем 4, начинаем движение влево с отсчетом от предыдущего 4 числа. Получим 3, 2, 1. Итого 4 - 3 = 1
4 - 6 = ?
Имеем 4, начинаем движение влево с отсчетом от предыдущего 4 числа. Получим 3, 2, 1, 10, 9, 8. Итого 4 - 6 = 8
Обращаю внимание на то, что аксиомы - это субъективные истины, примаемые нами в качестве истин без доказательства в силу отсутствия у нас фактов противоречия этих истин практике. Законы природы объективны, но формулирование законов природы субъективны и потому не точны и с течением времени подлежат уточнению или даже отрицанию. В этом и состоит смысл утверждения о безграничности познания природы.
Аксиомы числового ряда, сформулированные для чисел на прямой линии не обязаны выполняться для чисел натурального ряда на замкнутой линии.
Прошу уважаемых коллег высказаться по изложенному. Прошу не ссылаться на какие-то математические понятия без конкретных примеров. Если хотите сказать, что все это описано, то приведите пример, показывающий выполнение всех 9 свойств, представленных выше. Так будет справедливо: раз Вы говорите, что все ранее опубликовано, то Вы это и докажите наглядно.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Об одном свойстве натуральных чисел
СообщениеДобавлено: 17 ноя 2015, 13:59 
Не в сети
Мастер
Зарегистрирован:
24 янв 2013, 22:19
Сообщений: 216
Cпасибо сказано: 54
Спасибо получено:
15 раз в 15 сообщениях
Очков репутации: 3

Добавить очки репутацииУменьшить очки репутации
На форуме dxdy вводную часть ТС специаисты уже обсудили. Теперь хотел бы увидеть там же ДОПОЛНЕНИЯ и
и результат обсуждения.
А ДОПОЛНЕНИЯ там еще нет. Не хорошо как-то выглядит.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Об одном свойстве натуральных чисел
СообщениеДобавлено: 18 ноя 2015, 15:37 
Не в сети
Начинающий
Зарегистрирован:
11 ноя 2015, 17:37
Сообщений: 4
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Практическое использование обсуждаемого свойства натуральных чисел.
Рассмотрим преобразование одного текста в другой текст. Для демонстрационных целей ограничимся преобразованием слова "Ад" в слово "Агат".
ПЕРВЫЙ ШАГ - вычисление собственного алфавита слова "Ад". Собственный алфавит - это различне символы, которые встречаются в слове "Ад". Таких символов 2 - буква "А" и буква "д".
ВТОРОЙ ШАГ - вычисление собственного алфавита слова "Агат". Таких символов 4 - буква "А", буква "г", буква "а", буква "т".
ТТНТИЙ ШАГ - вычисление собственного алфавита обоих слов. Таких символов 5 - буква "А", буква "д", буква "г", буква "а", буква "т".
ЧЕТВЕРТЫЙ ШАГ - запишем собственный алфавит обох слов в одну строчку и перенумеруем символы алфавита. Номера букв - это адреса этих букв в алфавите.
А-1 д-2 г-3 а-4 т-5
Длина алфавита N = 5
ПЯТЫЙ ШАГ - вычисление вектора приращения, позволяющего преобразовать слово "Ад" в слово "Агат". Вектор приращения обозначим через V().
1) Берем первую букву слова "Ад" - это буква "А". Находим адрес этой буквы в общем алфавите. Это число 1. Берем первую букву слова "Агат" - это буква "А". Находим адрес этой буквы в общем алфавите. Это число 1. Находим разность адресов 1 - 1 = 0. Это меньше 1, поэтому прибавляем к разности N = 5. Получим 0 + 5 = 5. Записываем это число на первое место в вектор приращения V(1) = 5.
2) Берем вторую букву слова "Ад" - это буква "д". Находим адрес этой буквы в общем алфавите. Это число 2. Берем вторую букву слова "Агат" - это буква "г". Находим адрес этой буквы в общем алфавите. Это число 3. Находим разность адресов 3 - 2 = 1. Это число больше 0 и меньше 6, поэтому записываем это число на второе место в вектор приращения V(2) = 1.
3) Поскольку первое закончилось, то начинаем использовать это слово сначала. Берем первую букву слова "Ад" - это буква "А". Находим адрес этой буквы в общем алфавите. Это число 1. Берем третью букву слова "Агат" - это буква "а". Находим адрес этой буквы в общем алфавите. Это число 4. Находим разность адресов 4 - 1 = 3. Это число больше 0 и меньше 6, поэтому записываем это число на третье место в вектор приращения V(3) = 3.
4) Берем вторую букву слова "Ад" - это буква "д". Находим адрес этой буквы в общем алфавите. Это число 2. Берем четвертую букву слова "Агат" - это буква "т". Находим адрес этой буквы в общем алфавите. Это число 5. Находим разность адресов 5 - 2 = 3. Это число больше 0 и меньше 6, поэтому записываем это число на четвертое место в вектор приращения V(4) = 3.
Вектор приращений содержит 4 числа V()={5,1,3,3}
ШЕСТОЙ ШАГ - преобразование слова "Ад" в слово "Агат".
1) Берем первую букву из слова "Ад" - это буква "А". Находим адрес этой буквы в общем алфавите. Это число 1. Прибавляем к этому адресу первое число из вектора приращения - это число 5. 1 + 5 = 6. Поскольку 6 > N = 5, то вычитаем число N. 6 - 5 = 1. Это адрес первой буквы второго слова в общем алфавите. По этому адресу находится буква "А" - это первая буква второго слова.
2) Берем вторую букву из слова "Ад" - это буква "д". Находим адрес этой буквы в общем алфавите. Это число 2. Прибавляем к этому адресу второе число из вектора приращения - это число 1. 2 + 1 = 3. Поскольку 3 больше 0 и меньше 6, то ничего больше не делаем. Это адрес второй буквы второго слова в общем алфавите. По этому адресу находится буква "г" - это вторая буква второго слова.
2) Поскольку первое закончилось, то начинаем использовать это слово сначала. Берем первую букву из слова "Ад" - это буква "А". Находим адрес этой буквы в общем алфавите. Это число 1. Прибавляем к этому адресу третье число из вектора приращения - это число 3. 1 + 3 = 4. Поскольку 4 больше 0 и меньше 6, то ничего больше не делаем. Это адрес третьей буквы второго слова в общем алфавите. По этому адресу находится буква "а" - это третья буква второго слова.
3) Берем вторую букву из слова "Ад" - это буква "д". Находим адрес этой буквы в общем алфавите. Это число 2. Прибавляем к этому адресу четвертое число из вектора приращения - это число 3. 2 + 3 = 5. Поскольку 5 больше 0 и меньше 6, то ничего больше не делаем. Это адрес четвертой буквы второго слова в общем алфавите. По этому адресу находится буква "т" - это четвертая буква второго слова.
Мы вычислили второе слово "Агат" из первого слова "Ад". Это действие мы называем преобразованием слова "Ад" в слово "Агат".
Как видите для преобразования необходимо использовать описанное ранее свойство натуральных чисел. Обратите внимание: адреса в алфавите должны начинаться с 1. Если адрес в алфавите начинается с 0, то алгоритм не работает. Это связано с тем, что прибавление 0 не изменяет адрес. Таким образом, описанное свойство натуральных чисел - это арифметика адресов в алфавитах при преобразовании текстов.
Преобразование текстов не является шифрованием, так как целью шифрования является сокрытие смысла текста. А у нас целью преобразования является получение нового текста с новым смыслом и новым размером. Кроме того, если бы этот алгоритм был алгоритмом шифрования, то государство давно бы принудительно выкупила бы его в свою собственность. У государства имеются более мощные и надежные средства защиты, чем наш алгоритм преобразования текстов. Наш алгоритм предназначен для защиты частной информации.
Преобразование текста можно производить самого в себя, в том числе можно получить весь текст из любой буквы текста. Это является изоморфизмом процесса выращивания организма из одной клетки. Конечно, в живой природе все намного сложнее, но общая схема, скорее всего, неизменна.
Прошу коллег высказаться, а также задать интересующие Вас вопросы.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Методы факторизации натуральных чисел и симметрия чисел

в форуме Теория чисел

aleut

1

853

22 мар 2012, 11:52

Последовательность натуральных чисел

в форуме Теория вероятностей

bella

1

341

19 окт 2012, 10:08

Дано 100 натуральных чисел

в форуме Комбинаторика и Теория вероятностей

mezolit

1

307

26 фев 2012, 00:09

Сумма всех натуральных чисел

в форуме Ряды

dexforint

2

165

21 мар 2016, 19:35

Найти количество натуральных чисел

в форуме Теория чисел

Trek

6

347

16 янв 2015, 22:20

Синусы ста последовательных натуральных чисел

в форуме Задачи со школьных и студенческих олимпиад

Sardaana

1

227

07 дек 2014, 15:34

Сумма всех натуральных чисел

в форуме Размышления по поводу и без

Sviatoslav

6

740

05 ноя 2014, 23:36

Задание на нахождение натуральных чисел

в форуме Начала анализа и Другие разделы школьной математики

Elephant

10

461

15 ноя 2014, 12:19

Сумма последовательных натуральных чисел

в форуме Задачи со школьных и студенческих олимпиад

spins06

8

637

30 июн 2015, 20:06

Сумма всех натуральных чисел

в форуме Алгебра

lika01

16

991

15 апр 2013, 13:15


Часовой пояс: UTC + 4 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 5


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2016 MathHelpPlanet.com. All rights reserved