| Математический форум Math Help Planet http://mathhelpplanet.com/ |
|
| Ряды http://mathhelpplanet.com/viewtopic.php?f=55&t=31908 |
Страница 1 из 1 |
| Автор: | Peter 20 [ 25 мар 2014, 19:23 ] |
| Заголовок сообщения: | Ряды |
Исследовать ряды на сходимость |
|
| Автор: | Alexdemath [ 27 мар 2014, 14:57 ] |
| Заголовок сообщения: | Re: Ряды |
Первый ряд. Оценим общий член "снизу". Так как [math]\frac{\sqrt{n+1}}{n-1} \geqslant \frac{1}{n-1} \geqslant \frac{1}{n} \geqslant 0[/math] для всех [math]n \geqslant 2[/math], а гармонический ряд, как известно, расходится, то, согласно признаку сравнения, расходится и исходный ряд. |
|
| Автор: | Radley [ 28 мар 2014, 13:11 ] |
| Заголовок сообщения: | Re: Ряды |
Ко второму ряду применим радикальный признак Коши. После сокращения степени n останется [math]\lim (\frac{ 3 }{ 7 } )^{n}[/math] = 0. Значит, ряд сходится. |
|
| Страница 1 из 1 | Часовой пояс: UTC + 3 часа [ Летнее время ] |
| Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group http://www.phpbb.com/ |
|