Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
| Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
|
Страница 1 из 2 |
[ Сообщений: 11 ] | На страницу 1, 2 След. |
|
| Автор | Сообщение | ||
|---|---|---|---|
| DIOLLlA |
|
||
|
|
|||
| Вернуться к началу | |||
| Yurik |
|
||
|
Проверьте необходимое условие сходимости.
|
|||
| Вернуться к началу | |||
| DIOLLlA |
|
||
|
YurikЯ так понимаю, если не равняется нулю значит расходится?
|
|||
| Вернуться к началу | |||
| DIOLLlA |
|
||
|
Yurik
просто мне преподаватель рассказывал, типа там целый отдельный случай с этой еденицей |
|||
| Вернуться к началу | |||
| Yurik |
|
||
|
Да, там получится неопределённость [math]1^\infty[/math]. Но Вольфрам мне выдал в пределе единицу.
|
|||
| Вернуться к началу | |||
| DIOLLlA |
|
|
|
Yurik писал(а): Да, там получится неопределённость [math]1^\infty[/math]. Но Вольфрам мне выдал в пределе единицу. Это всё хорошо, но мне надо лишь написать сходится или расходится и на основание чего я сделал такое заключение. |
||
| Вернуться к началу | ||
| Yurik |
|
||
|
На концах интервала расходится, так как не выполняется необходимое условие сходимости.
|
|||
| Вернуться к началу | |||
| За это сообщение пользователю Yurik "Спасибо" сказали: DIOLLlA |
|||
| Shadows |
|
||
|
|
|||
| Вернуться к началу | |||
| Yurik |
|
||
|
Shadows
|
|||
| Вернуться к началу | |||
| Shadows |
|
||
|
Может я что-то не правильно понял, но у нас сумма ряда
[math]\left[\frac{4}{(x-5)^2}\right]^n[/math] И при каких x сходится или расходится....сходится когда в болших скобках меньше 1. когда [math]|x-5|>2[/math] |
|||
| Вернуться к началу | |||
|
На страницу 1, 2 След. | [ Сообщений: 11 ] |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Кто сейчас на конференции |
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2 |
| Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |