Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 4 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 4 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 23 ]  На страницу 1, 2, 3  След.
Автор Сообщение
 Заголовок сообщения: Задача №5
СообщениеДобавлено: 21 авг 2016, 13:09 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 11:27
Сообщений: 7860
Cпасибо сказано: 629
Спасибо получено:
7054 раз в 5486 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю andrei "Спасибо" сказали:
ivashenko
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 21 авг 2016, 15:30 
Не в сети
Light & Truth
Зарегистрирован:
14 июн 2011, 09:15
Сообщений: 2982
Cпасибо сказано: 45
Спасибо получено:
440 раз в 407 сообщениях
Очков репутации: 19

Добавить очки репутацииУменьшить очки репутации
*

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 21 авг 2016, 21:23 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
06 янв 2015, 23:27
Сообщений: 4526
Откуда: Саратов
Cпасибо сказано: 536
Спасибо получено:
306 раз в 254 сообщениях
Очков репутации: 47

Добавить очки репутацииУменьшить очки репутации
А интересное решение выдаёт Вольфрам для уравнения

[math]2^z = 7 (2 k+1)^2+(2 m+1)^2[/math]

Это так... мысли вслух :)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 21 авг 2016, 21:50 
Не в сети
Light & Truth
Зарегистрирован:
29 мар 2014, 00:59
Сообщений: 3394
Cпасибо сказано: 240
Спасибо получено:
213 раз в 202 сообщениях
Очков репутации: 22

Добавить очки репутацииУменьшить очки репутации
Nataly-Mak писал(а):
А интересное решение выдаёт Вольфрам для уравнения

[math]2^z = 7 (2 k+1)^2+(2 m+1)^2[/math]

Это так... мысли вслух :)


Это пока ещё не мысли - это всего-лишь запись условия :D1

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 21 авг 2016, 22:01 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
06 янв 2015, 23:27
Сообщений: 4526
Откуда: Саратов
Cпасибо сказано: 536
Спасибо получено:
306 раз в 254 сообщениях
Очков репутации: 47

Добавить очки репутацииУменьшить очки репутации
ivashenko писал(а):
Nataly-Mak писал(а):
А интересное решение выдаёт Вольфрам для уравнения

[math]2^z = 7 (2 k+1)^2+(2 m+1)^2[/math]

Это так... мысли вслух :)


Это пока ещё не мысли - это всего-лишь запись условия :D1

А решение уравнения в Вольфраме поглядели???
Вот поглядите тогда уж :D1
Относительно переменной z решение. Очень интересное! Ага.

Между прочим, очевидное, конечно:
при [math]k=m=0[/math] получаем [math]z=3[/math].
Можно рассмотреть отдельно [math]k=0[/math] и [math]m=0[/math].

Это так... тоже не решение задачи, разумеется, а мысли вслух ;)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 22 авг 2016, 02:25 
Не в сети
Light & Truth
Зарегистрирован:
29 мар 2014, 00:59
Сообщений: 3394
Cпасибо сказано: 240
Спасибо получено:
213 раз в 202 сообщениях
Очков репутации: 22

Добавить очки репутацииУменьшить очки репутации
Может быть как-то из этого что-то можно выудить:
[math]2^n=7(2^{n-3})+1(2^{n-3})=7(2^{n-4})+9(2^{n-4})=7(2^{n-5})+25(2^{n-5})=7(2^{n-6})+57(2^{n-6})=...=7(2^{n-(n-1)})+(2^n-7)^{n-(n-1)}[/math]


Среди этих выражений обязательно найдется такое, в котором степень двойки будет кратна 2, т.е. из неё обязательно можно будет извлечь корень квадратный, который будет целым числом. Но это конечно не решение задачи. Ну да, вообще это относится только к четным x,y а по условию они нечетные.

[math]2^n=7(2^{n-3}+1)+1(2^{n-3}-7)=7(2^{n-4}+1)+(9(2^{n-4})-7)=7(2^{n-5}+1)+(25(2^{n-5})-7)=7(2^{n-6}+1)+(57(2^{n-6})-7)=...=7(2^{n-(n-1)}+1)+((2^n-7)^{n-(n-1)})-7[/math]


Не это бред.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 22 авг 2016, 09:38 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 11:27
Сообщений: 7860
Cпасибо сказано: 629
Спасибо получено:
7054 раз в 5486 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Эта задача из записных книжек Л.Эйлера. :)
Через пару дней выложу свою попытку доказательства.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 22 авг 2016, 09:47 
Не в сети
Light & Truth
Зарегистрирован:
14 июн 2011, 09:15
Сообщений: 2982
Cпасибо сказано: 45
Спасибо получено:
440 раз в 407 сообщениях
Очков репутации: 19

Добавить очки репутацииУменьшить очки репутации
Для начала надо решить сравнение

[math]2^n\equiv x^2\pmod 7[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 22 авг 2016, 12:05 
Не в сети
Light & Truth
Зарегистрирован:
14 июн 2011, 09:15
Сообщений: 2982
Cпасибо сказано: 45
Спасибо получено:
440 раз в 407 сообщениях
Очков репутации: 19

Добавить очки репутацииУменьшить очки репутации
vorvalm писал(а):
Для начала надо решить сравнение

[math]2^n\equiv x^2\pmod 7[/math]

Например, при [math]x=1[/math]
[math]2^{6m}\equiv 1\pmod 7,\;\;m\in N.[/math]
Это сравнение решается и при [math]x^2=14t+1,\;t\in N.(169,225,...)[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 22 авг 2016, 14:21 
Не в сети
Light & Truth
Зарегистрирован:
06 дек 2014, 10:11
Сообщений: 3337
Cпасибо сказано: 57
Спасибо получено:
722 раз в 651 сообщениях
Очков репутации: 203

Добавить очки репутацииУменьшить очки репутации
Пусть [math]x[/math] и [math]y[/math] - нечетные целые числа.
[math]7x^2+y^2=N[/math]

Имеем тождества
[math]7(x-y)^2+(7x+y)^2=8(7x^2+y^2)[/math]
[math]7(x+y)^2+(7x-y)^2=8(7x^2+y^2)[/math]

Если [math]x[/math] и [math]y[/math] дают при делении на 4 одинаковый остаток, то полагаем
[math]x'=\frac{x+y}2, \quad y'=\frac{|7x-y|}2[/math]
Если разный, то
[math]x'=\frac{|x-y|}2, \quad y'=\frac{7x+y}2[/math]

Тогда [math]x', y'[/math] - нечетны и
[math]7x'^2+y'^2=2N[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю swan "Спасибо" сказали:
Shadows
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 23 ]  На страницу 1, 2, 3  След.

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Задача по МКТ

в форуме Молекулярная физика и Термодинамика

Kreator

1

324

21 июн 2012, 20:59

Задача

в форуме Теория вероятностей

bikovbiv

0

41

01 май 2017, 21:47

Задача по ТВ

в форуме Теория вероятностей

Boyarishnik

1

66

04 май 2017, 15:36

Задача 13

в форуме Тригонометрия

kicultanya

2

112

26 дек 2016, 09:53

Задача

в форуме Теория вероятностей

dazzy74

22

2089

22 июн 2012, 16:01

Задача по ТВ

в форуме Теория вероятностей

cincinat

7

131

10 май 2016, 13:22

Задача

в форуме Дискретная математика, Теория множеств и Логика

kicultanya

1

59

10 май 2017, 19:45

Задача №8

в форуме Интересные задачи участников форума MHP

andrei

1

145

05 окт 2016, 10:20

Задача

в форуме Дифференциальные и Интегральные уравнения

1Studentka

1

177

25 дек 2016, 17:40

Задача

в форуме Экономика и Финансы

anna1598554854755

1

184

16 ноя 2015, 23:06


Часовой пояс: UTC + 4 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2016 MathHelpPlanet.com. All rights reserved