Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 23 ]  На страницу 1, 2, 3  След.
Автор Сообщение
 Заголовок сообщения: Задача №5
СообщениеДобавлено: 21 авг 2016, 12:09 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 10:27
Сообщений: 7856
Cпасибо сказано: 629
Спасибо получено:
7054 раз в 5486 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю andrei "Спасибо" сказали:
ivashenko
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 21 авг 2016, 14:30 
Не в сети
Light & Truth
Зарегистрирован:
14 июн 2011, 08:15
Сообщений: 3136
Cпасибо сказано: 47
Спасибо получено:
454 раз в 420 сообщениях
Очков репутации: 19

Добавить очки репутацииУменьшить очки репутации
*

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 21 авг 2016, 20:23 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
06 янв 2015, 22:27
Сообщений: 5048
Откуда: Саратов
Cпасибо сказано: 566
Спасибо получено:
367 раз в 304 сообщениях
Очков репутации: 79

Добавить очки репутацииУменьшить очки репутации
А интересное решение выдаёт Вольфрам для уравнения

[math]2^z = 7 (2 k+1)^2+(2 m+1)^2[/math]

Это так... мысли вслух :)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 21 авг 2016, 20:50 
В сети
Light & Truth
Зарегистрирован:
28 мар 2014, 23:59
Сообщений: 4225
Cпасибо сказано: 347
Спасибо получено:
306 раз в 288 сообщениях
Очков репутации: 36

Добавить очки репутацииУменьшить очки репутации
Nataly-Mak писал(а):
А интересное решение выдаёт Вольфрам для уравнения

[math]2^z = 7 (2 k+1)^2+(2 m+1)^2[/math]

Это так... мысли вслух :)


Это пока ещё не мысли - это всего-лишь запись условия :D1

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 21 авг 2016, 21:01 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
06 янв 2015, 22:27
Сообщений: 5048
Откуда: Саратов
Cпасибо сказано: 566
Спасибо получено:
367 раз в 304 сообщениях
Очков репутации: 79

Добавить очки репутацииУменьшить очки репутации
ivashenko писал(а):
Nataly-Mak писал(а):
А интересное решение выдаёт Вольфрам для уравнения

[math]2^z = 7 (2 k+1)^2+(2 m+1)^2[/math]

Это так... мысли вслух :)


Это пока ещё не мысли - это всего-лишь запись условия :D1

А решение уравнения в Вольфраме поглядели???
Вот поглядите тогда уж :D1
Относительно переменной z решение. Очень интересное! Ага.

Между прочим, очевидное, конечно:
при [math]k=m=0[/math] получаем [math]z=3[/math].
Можно рассмотреть отдельно [math]k=0[/math] и [math]m=0[/math].

Это так... тоже не решение задачи, разумеется, а мысли вслух ;)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 22 авг 2016, 01:25 
В сети
Light & Truth
Зарегистрирован:
28 мар 2014, 23:59
Сообщений: 4225
Cпасибо сказано: 347
Спасибо получено:
306 раз в 288 сообщениях
Очков репутации: 36

Добавить очки репутацииУменьшить очки репутации
Может быть как-то из этого что-то можно выудить:
[math]2^n=7(2^{n-3})+1(2^{n-3})=7(2^{n-4})+9(2^{n-4})=7(2^{n-5})+25(2^{n-5})=7(2^{n-6})+57(2^{n-6})=...=7(2^{n-(n-1)})+(2^n-7)^{n-(n-1)}[/math]


Среди этих выражений обязательно найдется такое, в котором степень двойки будет кратна 2, т.е. из неё обязательно можно будет извлечь корень квадратный, который будет целым числом. Но это конечно не решение задачи. Ну да, вообще это относится только к четным x,y а по условию они нечетные.

[math]2^n=7(2^{n-3}+1)+1(2^{n-3}-7)=7(2^{n-4}+1)+(9(2^{n-4})-7)=7(2^{n-5}+1)+(25(2^{n-5})-7)=7(2^{n-6}+1)+(57(2^{n-6})-7)=...=7(2^{n-(n-1)}+1)+((2^n-7)^{n-(n-1)})-7[/math]


Не это бред.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 22 авг 2016, 08:38 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 10:27
Сообщений: 7856
Cпасибо сказано: 629
Спасибо получено:
7054 раз в 5486 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Эта задача из записных книжек Л.Эйлера. :)
Через пару дней выложу свою попытку доказательства.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 22 авг 2016, 08:47 
Не в сети
Light & Truth
Зарегистрирован:
14 июн 2011, 08:15
Сообщений: 3136
Cпасибо сказано: 47
Спасибо получено:
454 раз в 420 сообщениях
Очков репутации: 19

Добавить очки репутацииУменьшить очки репутации
Для начала надо решить сравнение

[math]2^n\equiv x^2\pmod 7[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 22 авг 2016, 11:05 
Не в сети
Light & Truth
Зарегистрирован:
14 июн 2011, 08:15
Сообщений: 3136
Cпасибо сказано: 47
Спасибо получено:
454 раз в 420 сообщениях
Очков репутации: 19

Добавить очки репутацииУменьшить очки репутации
vorvalm писал(а):
Для начала надо решить сравнение

[math]2^n\equiv x^2\pmod 7[/math]

Например, при [math]x=1[/math]
[math]2^{6m}\equiv 1\pmod 7,\;\;m\in N.[/math]
Это сравнение решается и при [math]x^2=14t+1,\;t\in N.(169,225,...)[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача №5
СообщениеДобавлено: 22 авг 2016, 13:21 
Не в сети
Light & Truth
Зарегистрирован:
06 дек 2014, 09:11
Сообщений: 4463
Cпасибо сказано: 74
Спасибо получено:
954 раз в 868 сообщениях
Очков репутации: 213

Добавить очки репутацииУменьшить очки репутации
Пусть [math]x[/math] и [math]y[/math] - нечетные целые числа.
[math]7x^2+y^2=N[/math]

Имеем тождества
[math]7(x-y)^2+(7x+y)^2=8(7x^2+y^2)[/math]
[math]7(x+y)^2+(7x-y)^2=8(7x^2+y^2)[/math]

Если [math]x[/math] и [math]y[/math] дают при делении на 4 одинаковый остаток, то полагаем
[math]x'=\frac{x+y}2, \quad y'=\frac{|7x-y|}2[/math]
Если разный, то
[math]x'=\frac{|x-y|}2, \quad y'=\frac{7x+y}2[/math]

Тогда [math]x', y'[/math] - нечетны и
[math]7x'^2+y'^2=2N[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю swan "Спасибо" сказали:
Shadows
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу 1, 2, 3  След.  Страница 1 из 3 [ Сообщений: 23 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Задача №24

в форуме Интересные задачи участников форума MHP

andrei

1

209

24 авг 2017, 14:41

Задача

в форуме Экономика и Финансы

ryabec

3

328

01 окт 2015, 21:50

ЗАдача ЭММ

в форуме Исследование операций и Задачи оптимизации

briz

1

392

08 окт 2015, 04:02

Задача

в форуме Механика

rexboemie

2

267

16 окт 2015, 18:25

Задача

в форуме Специальные разделы

paradoks92

0

479

16 дек 2011, 17:47

Задача

в форуме Алгебра

roman4rever

17

789

16 фев 2014, 19:25

Задача

в форуме Теория вероятностей

NightWolf

2

895

12 фев 2014, 09:58

Задача

в форуме Теория вероятностей

jojo

0

131

11 июн 2017, 20:45

Задача из к/р

в форуме Линейная и Абстрактная алгебра

Silas

4

333

24 дек 2011, 02:55

Задача №24(ОГЭ)

в форуме Геометрия

nata_leb

3

149

30 май 2017, 12:58


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2019 MathHelpPlanet.com. All rights reserved