Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 16 ]  На страницу Пред.  1, 2
Автор Сообщение
 Заголовок сообщения: Re: Проверьте пример, найти наибольшее и наименьшее значение фун
СообщениеДобавлено: 25 апр 2018, 19:01 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19034
Откуда: Пермь + Одесса
Cпасибо сказано: 11303
Спасибо получено:
5110 раз в 4617 сообщениях
Очков репутации: 692

Добавить очки репутацииУменьшить очки репутации
Mathnope писал(а):
А как узнать входит или не входит в область?
Подставить координаты точки в неравенства, задающие область. Если получатся верные числовые выражения, то точка входит в область, в противном случае - не входит.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Проверьте пример, найти наибольшее и наименьшее значение фун
СообщениеДобавлено: 25 апр 2018, 19:02 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 11084
Откуда: Москва
Cпасибо сказано: 950
Спасибо получено:
3235 раз в 2825 сообщениях
Очков репутации: 629

Добавить очки репутацииУменьшить очки репутации
Mathnope писал(а):
ааа,как эти пользоваться? :)

Посмотрите на мой треугольник, и увидите, какие точки не выходят за его пределы.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Проверьте пример, найти наибольшее и наименьшее значение фун
СообщениеДобавлено: 25 апр 2018, 19:03 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19034
Откуда: Пермь + Одесса
Cпасибо сказано: 11303
Спасибо получено:
5110 раз в 4617 сообщениях
Очков репутации: 692

Добавить очки репутацииУменьшить очки репутации
Ну да. Или построить область и полученные точки на одной координатной плоскости.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Проверьте пример, найти наибольшее и наименьшее значение фун
СообщениеДобавлено: 25 апр 2018, 19:57 
Не в сети
Продвинутый
Зарегистрирован:
02 фев 2018, 09:22
Сообщений: 59
Cпасибо сказано: 2
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Всем спасибо, вроде понятно
А по поводу решения, там же всё правильно у меня написано?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Проверьте пример, найти наибольшее и наименьшее значение фун
СообщениеДобавлено: 25 апр 2018, 20:30 
Не в сети
Beautiful Mind
Зарегистрирован:
12 окт 2017, 13:50
Сообщений: 1344
Cпасибо сказано: 45
Спасибо получено:
379 раз в 363 сообщениях
Очков репутации: 160

Добавить очки репутацииУменьшить очки репутации
В начале Вы писали(смотрите самое первое Ваше писание при открытие тему)
Mathnope писал(а):
Ответ: Наибольшее значение 10, в точке Z(3;1),

Здесь [math]x=3, y = 1 \Rightarrow x+y = 4 >3[/math] , а у Вас условие [math]x + y \leqslant 3 \Rightarrow t.(3,1) \notin D[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Проверьте пример, найти наибольшее и наименьшее значение фун
СообщениеДобавлено: 25 апр 2018, 20:49 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 мар 2016, 15:08
Сообщений: 4204
Cпасибо сказано: 42
Спасибо получено:
630 раз в 596 сообщениях
Очков репутации: 140

Добавить очки репутацииУменьшить очки репутации
Mathnope писал(а):
А по поводу решения, там же всё правильно у меня написано?

Вам по новой посты писать или вы попробуете прочитать, что вам написали?

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 16 ]  На страницу Пред.  1, 2

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Наименьшее и наибольшее значения функции по области

в форуме Пределы числовых последовательностей и функций, Исследования функций

Candice

2

459

09 ноя 2010, 20:35

Наибольшее наименьшее значения функции в замкнутой области

в форуме Дифференциальное исчисление

user2011bi40

6

1241

14 май 2013, 15:52

Найти наибольшее и наименьшее значения функции в области

в форуме Дифференциальное исчисление

Aleksey_Varov

2

407

07 апр 2011, 08:42

наименьшее и наибольшее значения функции в замкнутой области

в форуме Дифференциальное исчисление

Ksunny

1

1115

09 май 2012, 18:00

Наибольшее наименьшее значения функции в замкнутой области

в форуме Дифференциальное исчисление

user2011bi40

11

1663

04 май 2013, 18:11

наибольшее наименьшее значения функции в замкнутой области

в форуме Дифференциальное исчисление

gulya

33

2982

03 ноя 2011, 12:21

Найти наибольшее и наименьшее значения функции в области

в форуме Дифференциальное исчисление

Ciber15

1

90

09 апр 2018, 09:36

Наибольшее и наименьшее значения функции в замкнутой области

в форуме Дифференциальное исчисление

Alena_897

3

590

22 апр 2011, 13:38

Найти наибольшее и наименьшее значения функции в области

в форуме Дифференциальное исчисление

makc59

28

1237

12 фев 2014, 22:27

Наибольшее и наименьшее значения в замкнутой области D

в форуме Дифференциальное исчисление

TANKER

1

192

15 дек 2016, 11:14


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2018 MathHelpPlanet.com. All rights reserved