Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 6 ] 
Автор Сообщение
 Заголовок сообщения: Предел
СообщениеДобавлено: 21 дек 2016, 16:17 
Не в сети
Профи
Зарегистрирован:
12 апр 2013, 17:31
Сообщений: 477
Cпасибо сказано: 78
Спасибо получено:
1 раз в 1 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Изображение
Как это решается?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 21 дек 2016, 17:48 
Не в сети
Гений
Зарегистрирован:
25 июл 2014, 12:28
Сообщений: 594
Cпасибо сказано: 72
Спасибо получено:
186 раз в 172 сообщениях
Очков репутации: 37

Добавить очки репутацииУменьшить очки репутации
Например, по правилу Лопиталя.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 21 дек 2016, 19:55 
Не в сети
Профи
Зарегистрирован:
12 апр 2013, 17:31
Сообщений: 477
Cпасибо сказано: 78
Спасибо получено:
1 раз в 1 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Space писал(а):
Например, по правилу Лопиталя.

Изображение
0/0 получается(

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 21 дек 2016, 20:28 
Не в сети
Гений
Зарегистрирован:
25 июл 2014, 12:28
Сообщений: 594
Cпасибо сказано: 72
Спасибо получено:
186 раз в 172 сообщениях
Очков репутации: 37

Добавить очки репутацииУменьшить очки репутации
Вас ведь не смутило, что неопределенность [math]\frac{0}{0}[/math] имела место в начале решения. Почему бы не применить правило Лопиталя для раскрытия и этой неопределенности?

Более того, не обязательно все делать в лоб.

Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 21 дек 2016, 20:34 
Не в сети
Гений
Зарегистрирован:
25 июл 2014, 12:28
Сообщений: 594
Cпасибо сказано: 72
Спасибо получено:
186 раз в 172 сообщениях
Очков репутации: 37

Добавить очки репутацииУменьшить очки репутации
А можно существенно проще.

Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Предел
СообщениеДобавлено: 25 дек 2016, 20:16 
Не в сети
Начинающий
Зарегистрирован:
25 дек 2016, 20:00
Сообщений: 2
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Добрый вечер! Пожалуйста, помогите разобраться с этим заданием.

Доказать, что последовательность [math]\boldsymbol{x}[/math] [math]_{n}[/math] = 1+[math]\sqrt{n}[/math] [math]\cdot \cos{\frac{ \pi n }{ 2 } }[/math] не имеет предела.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 6 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Вычислить предел выражения, используя 1 замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

syncedzz

7

453

13 окт 2022, 15:55

Решить предел. Второй замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

NuTysya

1

376

21 фев 2023, 09:54

Решить предел. Второй замечательный предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

NuTysya

10

649

21 фев 2023, 09:55

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Nadi_B

3

237

26 апр 2015, 10:39

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

aljke

3

282

07 апр 2015, 14:36

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Snuss

11

914

01 мар 2015, 17:53

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

Cursedsmite

6

485

25 мар 2015, 15:49

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

lllulll

2

224

23 мар 2015, 08:05

Предел

в форуме Пределы числовых последовательностей и функций, Исследования функций

yana05

2

284

31 мар 2015, 21:37

Предел при х->0-

в форуме Дифференциальное исчисление

Schwarte

2

256

03 янв 2021, 22:15


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 5


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved