Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 7 ] 
Автор Сообщение
 Заголовок сообщения: Исследовать функцию на непрерывность
СообщениеДобавлено: 19 янв 2014, 14:08 
Не в сети
Начинающий
Зарегистрирован:
22 дек 2013, 11:48
Сообщений: 21
Cпасибо сказано: 6
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Подскажите, как решить дальше.
Нужно исследовать функцию на непрерывность и найти точки разрыва:
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию на непрерывность
СообщениеДобавлено: 19 янв 2014, 18:41 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
bajknatalya писал(а):
Подскажите, как решить дальше.
А дальше решать не нужно, так как вы изначально неверно раскрыли модуль и исследовали непрерывность.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию на непрерывность
СообщениеДобавлено: 19 янв 2014, 21:04 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
18 авг 2013, 14:27
Сообщений: 1978
Откуда: Москва
Cпасибо сказано: 384
Спасибо получено:
1069 раз в 855 сообщениях
Очков репутации: 197

Добавить очки репутацииУменьшить очки репутации
Точка разрыва здесь - точка в которой знаменатель обращается в 0.
Знаменатель равен нулю при х=-1. (Почему Вы пределы рассматриваете при х->0+0, не понятно)
Если х>-1 (обратите внимание, неравенство строгое!), то можно раскрыть модуль и дробь сократить.
Если х<-1, то аналогично.
Предел справа от х=-1 равен -1. Слева равен 1. Стройте часть графика для х<-1 и для х>-1. Обе части являются частями прямых.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю radix "Спасибо" сказали:
bajknatalya
 Заголовок сообщения: Re: Исследовать функцию на непрерывность
СообщениеДобавлено: 21 янв 2014, 09:05 
Не в сети
Начинающий
Зарегистрирован:
22 дек 2013, 11:48
Сообщений: 21
Cпасибо сказано: 6
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Спасибо большое, график получается такой же с точкой разрыва при х=-1. Получаем точку разрыва 1 рода (устранимый разрыв)?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию на непрерывность
СообщениеДобавлено: 21 янв 2014, 15:06 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Да.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию на непрерывность
СообщениеДобавлено: 21 янв 2014, 16:27 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
18 авг 2013, 14:27
Сообщений: 1978
Откуда: Москва
Cпасибо сказано: 384
Спасибо получено:
1069 раз в 855 сообщениях
Очков репутации: 197

Добавить очки репутацииУменьшить очки репутации
У меня скачок получается. :(

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Исследовать функцию на непрерывность
СообщениеДобавлено: 21 янв 2014, 16:32 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
radix писал(а):
У меня скачок получается.
Таки да. Скачок :crazy:

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 7 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Исследовать на непрерывность функцию

в форуме Пределы числовых последовательностей и функций, Исследования функций

solitudka

3

213

22 окт 2022, 17:05

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

Evgeny121

4

437

26 окт 2018, 23:05

Исследовать на непрерывность функцию

в форуме Пределы числовых последовательностей и функций, Исследования функций

__Milli__

4

691

18 ноя 2015, 18:02

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

RETU

8

503

23 июн 2018, 11:58

Исследовать на непрерывность функцию y = f(x)

в форуме Пределы числовых последовательностей и функций, Исследования функций

vika2020

1

335

05 янв 2017, 20:38

Исследовать на непрерывность функцию

в форуме Пределы числовых последовательностей и функций, Исследования функций

rfgbnfkbyf

6

547

27 дек 2015, 22:23

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

Kiryanovth

3

453

05 июн 2016, 16:07

исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

proswett

1

424

19 ноя 2018, 16:36

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

NEvOl

1

275

07 янв 2017, 11:32

Исследовать функцию на непрерывность

в форуме Пределы числовых последовательностей и функций, Исследования функций

solitudka

2

161

23 окт 2022, 17:05


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved