Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 13 ]  На страницу Пред.  1, 2
Автор Сообщение
 Заголовок сообщения: Re: Пределы не используя правило Лопиталя
СообщениеДобавлено: 05 апр 2013, 13:51 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13564
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3625 раз в 3182 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
Юрий! Я ответ знал уже через секунду, как только увидел предел. У Вас меньше 10 секунд никак не получится.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Пределы не используя правило Лопиталя
СообщениеДобавлено: 05 апр 2013, 14:30 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
27 дек 2011, 18:32
Сообщений: 2466
Откуда: Украина, Одесса
Cпасибо сказано: 565
Спасибо получено:
698 раз в 602 сообщениях
Очков репутации: 186

Добавить очки репутацииУменьшить очки репутации
Avgust писал(а):
Я ответ знал уже через секунду, как только увидел предел. У Вас меньше 10 секунд никак не получится.


Это ровным счетом ничего не говорит об эффективности, точнее рациональности, применяемых методов.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Analitik "Спасибо" сказали:
Talanov
 Заголовок сообщения: Re: Пределы не используя правило Лопиталя
СообщениеДобавлено: 06 апр 2013, 04:26 
Не в сети
Beautiful Mind
Аватара пользователя
Зарегистрирован:
19 фев 2011, 23:53
Сообщений: 1889
Откуда: Алексин
Cпасибо сказано: 276
Спасибо получено:
981 раз в 775 сообщениях
Очков репутации: 229

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Меня давно мучает вопрос, не является ли ЭБМ замаскированным Лопиталем?


Многие ЭБМ можно получить на основании [math]\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}[/math].
Используя правило Лопиталя или впомнив определение производной можно получить, что [math]\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right)[/math]



[math]\begin{gathered} {\left( {\sqrt {4 + x + {x^2}} } \right)^\prime } = \frac{{1 + 2x}}{{2\sqrt {4 + x + {x^2}} }} \hfill \\ \mathop {\lim }\limits_{x \to - 1} \frac{{\sqrt {4 + x + {x^2}} - 2}}{{x + 1}} = \frac{{1 + 2 \cdot \left( { - 1} \right)}}{{2\sqrt {4 + \left( { - 1} \right) + {{\left( { - 1} \right)}^2}} }} = - \frac{1}{4} \hfill \\ \end{gathered}[/math]

P.S. Если присмотрется к первому замечательному пределу, то можно увидеть, что он является производной синуса в нуле.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю erjoma "Спасибо" сказали:
mad_math
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2  Страница 2 из 2 [ Сообщений: 13 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Вычислить пределы используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

_Help_

2

240

19 дек 2021, 17:00

Вычислить пределы не используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

bulan

4

443

04 май 2021, 17:13

Вычислить пределы, не используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

Stepan_888

3

755

21 ноя 2016, 10:03

Найдите пределы, не используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

15d13

2

282

18 окт 2017, 04:34

Используя правило Лопиталя, найти пределы

в форуме Пределы числовых последовательностей и функций, Исследования функций

e_vuk15

1

150

21 дек 2019, 14:04

Решить пределы, не используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

TNowiz

0

121

17 дек 2019, 23:11

Найти пределы, используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

Alex Snake

3

383

12 дек 2018, 23:44

Вычислить пределы используя правило Лопиталя

в форуме Дифференциальное исчисление

Kiryanovth

2

320

13 апр 2016, 07:31

Найти пределы, используя правило Лопиталя

в форуме Пределы числовых последовательностей и функций, Исследования функций

liskamr

1

425

09 янв 2017, 12:40

Вычислить пределы, не используя правило Лопиталя:

в форуме Пределы числовых последовательностей и функций, Исследования функций

rosa19

1

515

10 апр 2016, 11:59


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved