Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 5 ] 
Автор Сообщение
 Заголовок сообщения: Доказать равенство
СообщениеДобавлено: 02 дек 2018, 17:29 
Не в сети
Профи
Зарегистрирован:
02 янв 2014, 21:56
Сообщений: 352
Cпасибо сказано: 27
Спасибо получено:
89 раз в 81 сообщениях
Очков репутации: 14

Добавить очки репутацииУменьшить очки репутации

Доказать, что для любого натурального числа [math]n[/math] справедливо равенство [math]\sum\limits_{k=1}^{3n}\frac{ sin \, k \varphi }{ sin \, 3k \varphi } =n,[/math] где [math]\varphi =\frac{ \pi }{ 6n+1 }.[/math]


Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Доказать равенство
СообщениеДобавлено: 02 дек 2018, 22:07 
Не в сети
Мастер
Зарегистрирован:
02 фев 2017, 00:21
Сообщений: 240
Cпасибо сказано: 1
Спасибо получено:
64 раз в 56 сообщениях
Очков репутации: 10

Добавить очки репутацииУменьшить очки репутации
По-моему, не выполняется уже на первом шаге:

[math]\begin{gathered}
n = 1 \hfill \\
\frac{{\sin \frac{\pi }{7}}}{{\sin \frac{{3\pi }}{7}}} + \frac{{\sin \frac{{2\pi }}{7}}}{{\sin \frac{{6\pi }}{7}}} + \frac{{\sin \frac{{3\pi }}{7}}}{{\sin \frac{{9\pi }}{7}}} = \frac{{\sin \frac{{6\pi }}{7}}}{{\sin \frac{{3\pi }}{7}}} + \frac{{\sin \frac{{2\pi }}{7}}}{{\sin \frac{\pi }{7}}} - \frac{{\sin \frac{{4\pi }}{7}}}{{\sin \frac{{2\pi }}{7}}} = \hfill \\
= \frac{{2\cos \frac{{3\pi }}{7}\sin \frac{{3\pi }}{7}}}{{\sin \frac{{3\pi }}{7}}} + \frac{{2\cos \frac{\pi }{7}\sin \frac{\pi }{7}}}{{\sin \frac{\pi }{7}}} - \frac{{2\cos \frac{{2\pi }}{7}\sin \frac{{2\pi }}{7}}}{{\sin \frac{{2\pi }}{7}}} = \hfill \\
= 2\left( {\cos \frac{\pi }{7} - \cos \frac{{2\pi }}{7} + \cos \frac{{3\pi }}{7}} \right) \hfill \\
\end{gathered}[/math]


А это выражение, согласно вольфраму (https://www.wolframalpha.com/input/?i=2*(sin(pi%2F7)-sin(2pi%2F7)%2Bsin(4pi%2F7))), не равно 1.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Доказать равенство
СообщениеДобавлено: 03 дек 2018, 20:16 
Не в сети
Профи
Зарегистрирован:
02 янв 2014, 21:56
Сообщений: 352
Cпасибо сказано: 27
Спасибо получено:
89 раз в 81 сообщениях
Очков репутации: 14

Добавить очки репутацииУменьшить очки репутации
underline писал(а):
А это выражение, согласно вольфраму не равно 1.

Не равно 1, так как вы предложили вольфраму другое выражение, а это: [math]2\left( \cos{\frac{ \pi }{ 7 }} -\cos{\frac{ 2 \pi }{ 7 }}+\cos{\frac{ 3 \pi }{ 7 }} \right)[/math] равно 1.

Пусть [math]\varphi =\frac{ \pi }{ 7 },[/math] тогда [math]2(\cos{ \varphi }-\cos{ 2 \varphi }+\cos{3 \varphi }) =\frac{ 2\sin{ \varphi } \cos{ \varphi }- 2\sin{ \varphi } \cos{2 \varphi } +2\sin{ \varphi } \cos{3 \varphi } }{ \sin{ \varphi } }=\frac{ \sin{2 \varphi }-( \sin{3 \varphi }- \sin{ \varphi })+ \sin{4 \varphi }- \sin{2 \varphi }}{ \sin{ \varphi } }=1.[/math]


Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Доказать равенство
СообщениеДобавлено: 03 дек 2018, 20:55 
Не в сети
Мастер
Зарегистрирован:
02 фев 2017, 00:21
Сообщений: 240
Cпасибо сказано: 1
Спасибо получено:
64 раз в 56 сообщениях
Очков репутации: 10

Добавить очки репутацииУменьшить очки репутации
Промазал.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Доказать равенство
СообщениеДобавлено: 03 дек 2018, 21:51 
Не в сети
Гений
Аватара пользователя
Зарегистрирован:
10 дек 2014, 20:21
Сообщений: 631
Cпасибо сказано: 86
Спасибо получено:
316 раз в 263 сообщениях
Очков репутации: 66

Добавить очки репутацииУменьшить очки репутации
Наблюдения показывают, что в формуле можно заменить число 3 на любое нечетное натуральное число m, соответственно [math]\varphi = \frac{\pi }{2mn+1}[/math].

А при четных m работает вот такая формула: [math]\sum\limits_{k = 1}^{mn}{{{( - 1)}^k}}\frac{{\sin \left({k\varphi}\right)}}{{\sin (km\varphi )}}= n;\;\varphi = \frac{\pi}{{2mn + 1}}[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Li6-D "Спасибо" сказали:
Boris Skovoroda
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Доказать равенство множеств и равенство декартовых пр-ий

в форуме Дискретная математика, Теория множеств и Логика

SergeyYsm

1

251

22 сен 2015, 14:35

Доказать равенство

в форуме Дискретная математика, Теория множеств и Логика

bu4a

0

250

24 янв 2013, 23:58

Доказать равенство

в форуме Тригонометрия

oksanakurb

1

224

03 янв 2012, 13:18

Доказать равенство

в форуме Ряды

Dirolina

8

251

17 июн 2015, 00:18

Доказать равенство

в форуме Пределы числовых последовательностей и функций, Исследования функций

RussianFalth

2

288

18 май 2014, 15:46

Доказать равенство

в форуме Линейная и Абстрактная алгебра

Dreamchaser

8

106

04 май 2018, 16:33

Доказать равенство

в форуме Задачи со школьных и студенческих олимпиад

rafic0808

1

289

24 май 2015, 20:14

Доказать равенство

в форуме Пределы числовых последовательностей и функций, Исследования функций

PolushkinaAA

4

180

17 дек 2014, 22:04

Доказать равенство

в форуме Пределы числовых последовательностей и функций, Исследования функций

Petrower

2

222

29 дек 2011, 16:48

Доказать равенство:

в форуме Дискретная математика, Теория множеств и Логика

DMart92

3

478

20 фев 2012, 16:46


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2018 MathHelpPlanet.com. All rights reserved