Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 4 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 4 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 7 ] 
Автор Сообщение
 Заголовок сообщения: Решение системы нелинейных уравнений 8 уравнений – 8 неизвес
СообщениеДобавлено: 21 янв 2017, 05:46 
Не в сети
Начинающий
Зарегистрирован:
24 дек 2016, 06:16
Сообщений: 4
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Решаю систему нелинейных уравнений в символьном виде, решение выполняю с помощью математических программ. Возник вопрос в плане математики, так как в какой бы я программе не решал данное уравнение, результат один «уравнение не имеет решения».
Вот данная система нелинейных уравнений:[math]\left\{\!\begin{aligned}
& ua=(a1+a2+a3+a4+a5+a6+a7+a8) \\
& v1*(a1-a2)+v2*(a3-a4)+v3*(a5-a6)+v4*(a7-a8)=-4*(ia*za+ib*zab+ic*zca+id*zda) \\
& v1^2*(a1-a2)+v2^2*(a3-a4)+v3^2*(a5-a6)+v4^2*(a7-a8)=4*(za*ya+za*yab+za*yca+za*yda-zab*yab-zca*yca+zad*yad)*ua \\
& 1^3*(a1-a2)+v2^3*(a3-a4)+v3^3*(a5-a6)+v4^3*(a7-a8)=-4*(za*ya+za*yab+za*yca+za*yad-zab*yab-zca*yca+zad*yad)*(ia*za+ib*zab+ic*zca-id*zad) \\
& v1^4*(a1-a2)+v2^4*(a3-a4)+v3^4*(a5-a6)+v4^4*(a7-a8)=4*(za*ya+za*yab+za*yca+za*yad-zab*yab-zca*yca+zad*yad) \\
& v1^5*(a1-a2)+v2^5*(a3-a4)+v3^5*(a5-a6)+v4^5*(a7-a8)=-4*(za*ya+za*yab+za*yca+za*yad-zab*yab-zca*yca+zad*yad) \\
& v1^6*(a1-a2)+v2^6*(a3-a4)+v3^6*(a5-a6)+v4^6*(a7-a8)=4*(za*ya+za*yab+za*yca+za*yad-zab*yab-zca*yca+zad*yad) \\
& v1^7*(a1-a2)+v2^7*(a3-a4)+v3^7*(a5-a6)+v4^7*(a7-a8)=-4*(za*ya+za*yab+za*yca+za*yad-zab*yab-zca*yca+zad*yad)
\end{aligned}\right.[/math]

Правые части уравнений в десятки раз длиннее, тех что я написал, но так как они не меняют «смысла» системы, я не стал писать их полностью.
Требуется найти переменные: a1 a2 a3 a4 a5 a6 a7 a8.
Вопрос в том, что сделать что бы данная система уравнений имела решение? Пробовал понизить степень, результатов это никаких не дало. у меня есть возможность добавить девятое, либо даже десятое уравнение в систему.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решение системы нелинейных уравнений 8 уравнений – 8 неизвес
СообщениеДобавлено: 21 янв 2017, 09:40 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
29 окт 2010, 12:15
Сообщений: 2054
Cпасибо сказано: 71
Спасибо получено:
682 раз в 537 сообщениях
Очков репутации: 182

Добавить очки репутацииУменьшить очки репутации
Да пусть правые части хоть в тристатыщпитсот раз длиннее.
Судя по заявлению - неизвестные только [math]a_1, \ldots, a_8[/math], а все эти ua, v1, ... просто параметры, которые надо считать известными. А тогда и система у Вас линейная с Вандермондоподобным определителем.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решение системы нелинейных уравнений 8 уравнений – 8 неизвес
СообщениеДобавлено: 22 янв 2017, 12:38 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 20:13
Сообщений: 10015
Откуда: Москва
Cпасибо сказано: 916
Спасибо получено:
3070 раз в 2673 сообщениях
Очков репутации: 617

Добавить очки репутацииУменьшить очки репутации
В символьном виде мне Мапл тоже ничего не дал. Наверное лучше поступить так: вычисляете правые дикие части (я обозначил их как b1, b2, ... , b7 ) и решаете систему 8 линейных уравнений :

Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Avgust "Спасибо" сказали:
dr Watson
 Заголовок сообщения: Re: Решение системы нелинейных уравнений 8 уравнений – 8 неизвес
СообщениеДобавлено: 22 янв 2017, 14:55 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
29 окт 2010, 12:15
Сообщений: 2054
Cпасибо сказано: 71
Спасибо получено:
682 раз в 537 сообщениях
Очков репутации: 182

Добавить очки репутацииУменьшить очки репутации
Погорячился я, назвав определитель Вандермондоподобным - разглядел только отличие в знаках, а там ещё и параметров не 8, а 4.
Avgust писал(а):
В символьном виде мне Мапл тоже ничего не дал.

Благодаря предыдущему оратору заметил, что определитель нулевой: складывая 1 столбец со 2м, 3й с 4м 5 с 6м и 7й с 8м, получим четыре одинаковых столбца.
Это означает, что ранг основной матрицы при любых значениях параметров не превышает пяти.
Тогда правой части надо ну очень постараться, чтобы сделать систему совместной и в таком случае получится огромное щастье в виде большого множества решений.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решение системы нелинейных уравнений 8 уравнений – 8 неизвес
СообщениеДобавлено: 23 янв 2017, 18:14 
Не в сети
Начинающий
Зарегистрирован:
24 дек 2016, 06:16
Сообщений: 4
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
dr Watson писал(а):
Тогда правой части надо ну очень постараться, чтобы сделать систему совместной и в таком случае получится огромное щастье в виде большого множества решений.

Как вы считаете, если в получившейся совместной системе уравнений задать пределы всем переменным и точность расчета то есть возможность получить одно единственное решение?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решение системы нелинейных уравнений 8 уравнений – 8 неизвес
СообщениеДобавлено: 24 янв 2017, 05:06 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
29 окт 2010, 12:15
Сообщений: 2054
Cпасибо сказано: 71
Спасибо получено:
682 раз в 537 сообщениях
Очков репутации: 182

Добавить очки репутацииУменьшить очки репутации
А где эта получившаяся? Если правые части постараются и параметры в левой части будут все разные и отличны от нуля, то получится система ранга 5 с восемью неизвестными. Тогда у Вас будет 3 свободных неизвестных, которым можно будет придать любые значения и тогда однозначно вычислить из системы остальные. То есть решения будут зависеть от трёх произвольно задаваемых свободных неизвестных и стало быть решений заведомо будет бесконечно много.
Следующая система в точности моделирует Вашу ситуацию: [math]\left\{\begin{matrix}x+y=a\\ 2x+2y=b\end{matrix}\right.[/math]
Если правые части не связаны соотношением [math]b=2a,[/math] то система не имеет решений, а если они постараются и удовлетворят ему, то система будет равносильна одному уравнению [math]x+y=a.[/math] Решений у него бесконечно много: берём икс произвольно и вычисляем игрек: [math]y=a-x.[/math]
Дело, как видите, совсем не в точности вычислений.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю dr Watson "Спасибо" сказали:
mixar
 Заголовок сообщения: Re: Решение системы нелинейных уравнений 8 уравнений – 8 неизвес
СообщениеДобавлено: 28 фев 2017, 16:18 
Не в сети
Начинающий
Зарегистрирован:
24 дек 2016, 06:16
Сообщений: 4
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Эта тема уже покрылась «слоем пыли». Но я справился с поставленной задачей и не люблю когда заходишь на какою ни будь тему на форуме читаешь её а ответ так и не найден. В моём случае ответ найден, следовательно считаю, что нужно показать результат.
Во первых исходная система уравнений которую требовалось решить претерпела изменения, были исправлены ошибки в её составлении и добавлено восьмое уравнение. Теперь она выглядит так:
Изображение
Изображение
За тот месяц, в течении которого я пробовал решить уравнение, было перепробовано множество методик. Мне пришлось углубиться в теорию оптимизации, изучить большое количество по этому поводу. В итоге я уже смерился что у меня не получится решить систему уравнений в символьном виде и надежда была только на методы оптимизации.
Но всё оказалось гораздо проще, данную систему можно решить в программе Wolfram Mathematica (у меня 11 версия). Вот код программы:
f1=v1*a1-v1*a2+v2*a3-v2*a4+v3*a5-v3*a6+v4*a7-V4*a8==-4*k1
f2=v1^2*a1+v1^2*a2+v2^2*a3+v2^2*a4+v3^2*a5+v3^2*a6+v4^2*a7+V4^2*a8==4*k2
f3=v1^3*a1-v1^3*a2+v2^3*a3-v2^3*a4+v3^3*a5-v3^3*a6+v4^3*a7-V4^3*a8==-4*k3
f4=v1^4*a1+v1^4*a2+v2^4*a3+v2^4*a4+v3^4*a5+v3^4*a6+v4^4*a7+V4^4*a8==4*k4
f5=v1^5*a1-v1^5*a2+v2^5*a3-v2^5*a4+v3^5*a5-v3^5*a6+v4^5*a7-V4^5*a8==-4*k5
f6=v1^6*a1+v1^6*a2+v2^6*a3+v2^6*a4+v3^6*a5+v3^6*a6+v4^6*a7+V4^6*a8==4*k6
f7=v1^7*a1-v1^7*a2+v2^7*a3-v2^7*a4+v3^7*a5-v3^7*a6+v4^7*a7-V4^7*a8==-4*k7
f8=v1^8*a1+v1^8*a2+v2^8*a3+v2^8*a4+v3^8*a5+v3^8*a6+v4^8*a7+V4^8*a8==4*k8
W=Solve[{f1,f2,f3,f4,f5,f6,f7,f8},{a1,a2,a3,a4,a5,a6,a7,a8}]
Да решение получается громоздкое (по этому поводу и не привожу его в этом сообщении), но система решена, а для меня это самое важное. Теперь я целиком и полностью убеждён что для решения математических задач, особенно в символьном программы лучше чем Wolfram Mathematica не существует.
Всем спасибо за помощь!

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Решение системы нелинейных уравнений

в форуме Maple

Alena164

4

915

05 май 2013, 18:48

Решение сложной системы нелинейных уравнений

в форуме Линейная и Абстрактная алгебра

Abraziv

1

438

14 авг 2015, 13:10

Точное решение системы нелинейных уравнений

в форуме Дифференциальные и Интегральные уравнения

amandra

7

378

17 фев 2014, 11:21

Системы нелинейных уравнений

в форуме Алгебра

ilona

2

318

14 сен 2013, 18:45

Системы нелинейных уравнений

в форуме Алгебра

onetwo

4

258

24 окт 2013, 15:56

Нахождение приближенных корней системы нелинейных уравнений

в форуме Численные методы

Phoenix_roller

3

417

24 янв 2013, 04:30

Решение систем нелинейных уравнений

в форуме Алгебра

AbirkulovSherali

10

177

26 ноя 2016, 15:23

Имеет ли эта система нелинейных уравнений решение?

в форуме Интересные задачи участников форума MHP

mar95

15

359

25 мар 2016, 01:46

Приближенное решение нелинейных уравнений с одной переменной

в форуме Численные методы

Evgeshagesha

0

128

02 ноя 2015, 10:42

Решение уравнений и системы уравнений (множества)

в форуме Дискретная математика, Теория множеств и Логика

GavrilovArtem

0

111

09 окт 2016, 18:39


Часовой пояс: UTC + 4 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2016 MathHelpPlanet.com. All rights reserved