Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 13 ]  На страницу Пред.  1, 2
Автор Сообщение
 Заголовок сообщения: Re: Решить дифференциальное уравнение
СообщениеДобавлено: 08 дек 2013, 12:26 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Если предположить, что уравнение имеет вид
[math](21x^3y^2+10x^2)dy+(9x^2y^3+4xy)dx=0[/math], то можно найти интегрирующий множитель [math]\mu=y^4[/math].

А в исходном виде я не знаю, как его свести к какому-либо стандартному типу уравнений :dntknow:

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решить дифференциальное уравнение
СообщениеДобавлено: 08 дек 2013, 13:04 
Не в сети
Начинающий
Зарегистрирован:
07 дек 2013, 07:54
Сообщений: 4
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Скорей всего вы правы ведь в этом пункте должно быть уравнение на интегрирующий множитель.Спасибо всем большое вы вернули мне веру в себя)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решить дифференциальное уравнение
СообщениеДобавлено: 08 дек 2013, 13:14 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Я точно не уверена.
Может и к уравнению [math](21x^3y^2+10x^2)dy+(9x^2y^3+4y)dx=0[/math] можно подобрать какой-то интегрирующий множитель более сложного вида.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю mad_math "Спасибо" сказали:
gojas
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2  Страница 2 из 2 [ Сообщений: 13 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

skef2

1

432

23 дек 2014, 16:26

Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

vaganovajanna

1

371

07 ноя 2015, 19:33

Решить дифференциальное уравнение

в форуме Дифференциальное исчисление

Didimba

4

654

06 июл 2015, 09:13

Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

smipe

32

896

20 май 2019, 17:00

Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

debikus

10

539

23 дек 2022, 07:13

Решить дифференциальное уравнение

в форуме Дифференциальное исчисление

HopeForTheBest

1

235

23 окт 2019, 23:20

Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

do4a

5

549

24 июн 2016, 22:21

Решить Дифференциальное уравнение

в форуме Комплексный анализ и Операционное исчисление

Dman

8

421

04 июн 2016, 17:08

Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

Ayan

1

294

30 сен 2016, 11:58

Решить Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

realvad

3

375

24 июн 2017, 16:16


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved