Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 4 ] 
Автор Сообщение
 Заголовок сообщения: Дифференциальное уравнение
СообщениеДобавлено: 18 сен 2013, 12:09 
Не в сети
Одарённый
Зарегистрирован:
04 сен 2013, 10:25
Сообщений: 175
Откуда: Моscow-City
Cпасибо сказано: 35
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
что делать дальше?

Вложения:
2062.png
2062.png [ 6.27 Кб | Просмотров: 449 ]
Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Дифференциальное уравнение
СообщениеДобавлено: 18 сен 2013, 13:34 
Не в сети
Гений
Аватара пользователя
Зарегистрирован:
31 авг 2011, 00:18
Сообщений: 575
Откуда: Краков, Польша
Cпасибо сказано: 69
Спасибо получено:
576 раз в 390 сообщениях
Очков репутации: 265

Добавить очки репутацииУменьшить очки репутации
Вы где-то потеряли знак минус. Должно быть

[math]y-\ln|1+y|=\ln|x+1|-x+C[/math]

- решение в неявном виде.


Последний раз редактировалось SzaryWilk 18 сен 2013, 13:35, всего редактировалось 1 раз.
Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю SzaryWilk "Спасибо" сказали:
lizasimpson
 Заголовок сообщения: Re: Дифференциальное уравнение
СообщениеДобавлено: 18 сен 2013, 13:34 
Не в сети
Light & Truth
Зарегистрирован:
23 авг 2010, 22:28
Сообщений: 4433
Cпасибо сказано: 565
Спасибо получено:
1075 раз в 952 сообщениях
Очков репутации: 315

Добавить очки репутацииУменьшить очки репутации
[math]x+xy+y'(y+xy)=0[/math]

[math]\frac{x(1+y)}{y(1+x)}+\frac{dy}{dx}=0[/math]

[math]\int \frac{xdx}{1+x}+\int \frac{ydy}{1+y}=\int 0 dx[/math]

[math]\int \frac{(1+x)dx}{1+x}-\int \frac{d(1+x)}{1+x}+\int \frac{(1+y)dy}{1+y}- \int \frac{d(1+y)}{1+y}=\int 0 dx[/math]

[math]x-\ln|x+1|+y-\ln |y+1|=C_1[/math]

[math]\ln e^{x+y}=\ln [e^{C_1}|(x+1)(y+1)|][/math]

[math]e^{x+y}=C(x+1)(y+1)[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Дифференциальное уравнение
СообщениеДобавлено: 18 сен 2013, 15:11 
Не в сети
Профи
Зарегистрирован:
11 сен 2013, 13:08
Сообщений: 364
Cпасибо сказано: 5
Спасибо получено:
161 раз в 137 сообщениях
Очков репутации: 35

Добавить очки репутацииУменьшить очки репутации
Можно избавиться от логарифмов => [math]\frac{e^y}{1+y}=\frac{Ce^{-x}}{1+x}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 4 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ

в форуме Дифференциальные и Интегральные уравнения

blueberry10

2

268

09 ноя 2015, 17:46

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

ahty

3

176

10 июн 2019, 09:14

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

annnnnnnnn_666

5

593

17 дек 2018, 00:09

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

5

199

10 июн 2019, 16:15

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

1

223

14 июн 2019, 15:00

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

1

152

27 июн 2019, 07:05

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

CM Punk

4

368

04 окт 2016, 01:17

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

4

176

28 май 2020, 18:41

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

4

372

20 май 2018, 18:26

Дифференциальное уравнение

в форуме Комплексный анализ и Операционное исчисление

briz

5

364

10 апр 2015, 05:29


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved