Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 6 ] 
Автор Сообщение
 Заголовок сообщения: Дифференциальное уравнение
СообщениеДобавлено: 07 июн 2013, 14:31 
Не в сети
Начинающий
Зарегистрирован:
07 июн 2013, 14:22
Сообщений: 6
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Пожалуйста,решите дифференциальное уравнение 2x^2ydx=(2x^3+y^3)dy

Вложения:
IMG_6921.JPG
IMG_6921.JPG [ 27.99 Кб | Просмотров: 32 ]
Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Дифференциальное уравнение
СообщениеДобавлено: 07 июн 2013, 14:41 
Не в сети
Beautiful Mind
Зарегистрирован:
16 дек 2012, 17:11
Сообщений: 1730
Cпасибо сказано: 160
Спасибо получено:
322 раз в 309 сообщениях
Очков репутации: 104

Добавить очки репутацииУменьшить очки репутации
[math]2x^2ydx=(2x^3+y^3)dy[/math]

[math]2= \left (\frac{2x}{y}+\frac{y^2}{x^2} \right )y'[/math]

[math]\left (2 \cdot \frac{x}{y}+\left ( \frac{y}{x} \right )^2 \right )y' = 2[/math]

[math]t = \frac{y}{x}, \frac{1}{t} = \frac{x}{y}, y'=t'x+t[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Wersel "Спасибо" сказали:
pavel_cvirenko
 Заголовок сообщения: Re: Дифференциальное уравнение
СообщениеДобавлено: 07 июн 2013, 14:47 
Не в сети
Начинающий
Зарегистрирован:
07 июн 2013, 14:22
Сообщений: 6
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Оо,спасибо,но можно расписать поподробнее,я ничего не понимаю в мат. анализе.Пожалуйста!

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Дифференциальное уравнение
СообщениеДобавлено: 07 июн 2013, 14:52 
Не в сети
Beautiful Mind
Зарегистрирован:
16 дек 2012, 17:11
Сообщений: 1730
Cпасибо сказано: 160
Спасибо получено:
322 раз в 309 сообщениях
Очков репутации: 104

Добавить очки репутацииУменьшить очки репутации
Далее следует решить дифференциальное уравнение с разделяющимися переменными:

[math]\left (\frac{2}{t}+t^2 \right ) \cdot (t'x+t) = 2[/math]

Чтобы понять, можно почитать, например: Сборник задач по высшей математике. 2 курс. Лунгу К.Н., Норин В.П. и др.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Дифференциальное уравнение
СообщениеДобавлено: 07 июн 2013, 15:05 
Не в сети
Начинающий
Зарегистрирован:
07 июн 2013, 14:22
Сообщений: 6
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
блин,нет времени разбираться, срочно надо решение(

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Дифференциальное уравнение
СообщениеДобавлено: 07 июн 2013, 16:54 
Не в сети
Свет и истина
Аватара пользователя
Зарегистрирован:
30 мар 2010, 11:03
Сообщений: 7479
Cпасибо сказано: 526
Спасибо получено:
3644 раз в 2901 сообщениях
Очков репутации: 745

Добавить очки репутацииУменьшить очки репутации
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 6 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ

в форуме Дифференциальные и Интегральные уравнения

blueberry10

2

268

09 ноя 2015, 17:46

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

ahty

3

176

10 июн 2019, 09:14

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

annnnnnnnn_666

5

593

17 дек 2018, 00:09

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

5

199

10 июн 2019, 16:15

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

1

223

14 июн 2019, 15:00

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

1

152

27 июн 2019, 07:05

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

CM Punk

4

368

04 окт 2016, 01:17

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

4

176

28 май 2020, 18:41

Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

4

372

20 май 2018, 18:26

Дифференциальное уравнение

в форуме Комплексный анализ и Операционное исчисление

briz

5

364

10 апр 2015, 05:29


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved