Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 37 ]  На страницу Пред.  1, 2, 3, 4
Автор Сообщение
 Заголовок сообщения: Re: Решить дифференциальное уравнение
СообщениеДобавлено: 17 ноя 2012, 10:30 
Не в сети
Light & Truth
Зарегистрирован:
21 авг 2011, 14:49
Сообщений: 5279
Cпасибо сказано: 315
Спасибо получено:
2299 раз в 1966 сообщениях
Очков репутации: 520

Добавить очки репутацииУменьшить очки репутации
Iraevskv писал(а):
Проинтегрировал. Константу добавлять?

А как же? Это будет [math]C_1[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решить дифференциальное уравнение
СообщениеДобавлено: 17 ноя 2012, 10:56 
Не в сети
Light & Truth
Зарегистрирован:
21 авг 2011, 14:49
Сообщений: 5279
Cпасибо сказано: 315
Спасибо получено:
2299 раз в 1966 сообщениях
Очков репутации: 520

Добавить очки репутацииУменьшить очки репутации
[math]\begin{gathered} - 2yy'' = 1 - {\left( {y'} \right)^2} \hfill \\ p\left( y \right) = y'\,\,\, = > \,\,\,y'' = yp' \hfill \\ - 2{y^2}p' = 1 - {p^2}\,\,\, = > \,\,\,\,\frac{{dp}}{{1 - {p^2}}} = - \frac{{dy}}{{2{y^2}}} \hfill \\ \ln \left| {\frac{{1 + p}}{{1 - p}}} \right| = \frac{1}{y} + {C_1}\,\, = > \,\,\,\frac{{1 + p}}{{1 - p}} = {C_1} \cdot {e^{\frac{1}{y}}}\,\, = > \,\,\, - 2 - \frac{1}{{1 - p}} = {C_1} \cdot {e^{\frac{1}{y}}} \hfill \\ ... \hfill \\ \end{gathered}[/math]

Дальше, думаю, понятно.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Yurik "Спасибо" сказали:
Iraevskv, mad_math
 Заголовок сообщения: Re: Решить дифференциальное уравнение
СообщениеДобавлено: 17 ноя 2012, 21:23 
Не в сети
Продвинутый
Аватара пользователя
Зарегистрирован:
10 окт 2012, 14:41
Сообщений: 92
Cпасибо сказано: 16
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Не совсем. P заменить на y' и с помощью подусловия у(0)=-3; у'(0)=2 вычислить?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решить дифференциальное уравнение
СообщениеДобавлено: 17 ноя 2012, 23:46 
Не в сети
Light & Truth
Зарегистрирован:
23 авг 2010, 22:28
Сообщений: 4433
Cпасибо сказано: 565
Спасибо получено:
1075 раз в 952 сообщениях
Очков репутации: 315

Добавить очки репутацииУменьшить очки репутации
[math]y'=p(y) \ \to \ y''=p'(y)y'=pp'[/math]

[math]-2ypp'=1-p[/math]

[math]-2yp\frac{dp}{dy}=1-p^2[/math]

Кажется, я опоздал с ответом. :D1

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решить дифференциальное уравнение
СообщениеДобавлено: 17 ноя 2012, 23:51 
Не в сети
Light & Truth
Зарегистрирован:
23 авг 2010, 22:28
Сообщений: 4433
Cпасибо сказано: 565
Спасибо получено:
1075 раз в 952 сообщениях
Очков репутации: 315

Добавить очки репутацииУменьшить очки репутации
Yurik писал(а):
[math]y'' = yp'[/math]


А разве не [math]y''=p'y'=pp'[/math]?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решить дифференциальное уравнение
СообщениеДобавлено: 19 ноя 2012, 06:37 
Не в сети
Продвинутый
Аватара пользователя
Зарегистрирован:
10 окт 2012, 14:41
Сообщений: 92
Cпасибо сказано: 16
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Не совсем сходится. Без предела тут не разберешься. В знаменателе е в степени 1/0Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Решить дифференциальное уравнение
СообщениеДобавлено: 19 ноя 2012, 16:34 
Не в сети
Продвинутый
Аватара пользователя
Зарегистрирован:
10 окт 2012, 14:41
Сообщений: 92
Cпасибо сказано: 16
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Прошу помочь. Не сходится. А уже завтра нужно сдавать.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2, 3, 4  Страница 4 из 4 [ Сообщений: 37 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

skef2

1

432

23 дек 2014, 16:26

Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

vaganovajanna

1

371

07 ноя 2015, 19:33

Решить дифференциальное уравнение

в форуме Дифференциальное исчисление

Didimba

4

654

06 июл 2015, 09:13

Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

smipe

32

896

20 май 2019, 17:00

Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

debikus

10

539

23 дек 2022, 07:13

Решить дифференциальное уравнение

в форуме Дифференциальное исчисление

HopeForTheBest

1

235

23 окт 2019, 23:20

Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

do4a

5

549

24 июн 2016, 22:21

Решить Дифференциальное уравнение

в форуме Комплексный анализ и Операционное исчисление

Dman

8

421

04 июн 2016, 17:08

Решить дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

Ayan

1

294

30 сен 2016, 11:58

Решить Дифференциальное уравнение

в форуме Дифференциальные и Интегральные уравнения

realvad

3

375

24 июн 2017, 16:16


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved